Math, asked by maitisahel, 22 days ago

(iv) cos 40°cos 100°cos 160º = 1/8

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Consider,

\rm :\longmapsto\:cos40\degree cos100\degree cos160\degree

\rm \:  =  \:cos40\degree cos(180\degree  - 80\degree )cos(180\degree  - 20\degree )

We know,

\boxed{ \tt{ \: cos(180\degree  - x) =  -  \: cosx \: }}

\rm \:  =  \:cos40\degree [ - cos80\degree ] \: [ - cos20\degree ]

\rm \:  =  \:cos20\degree cos40\degree cos80\degree

\rm \:  =  \:cos20\degree cos(60\degree  - 20\degree) cos(60\degree  + 20\degree )

We know,

\boxed{ \tt{ \: cosxcos(60\degree  - x)cos(60\degree  + x) =  \frac{1}{4}cos3x \: }}

So, using this identity, we get

\rm \:  =  \:\dfrac{1}{4} \: cos[3 \times 20\degree ]

\rm \:  =  \:\dfrac{1}{4} \: cos60\degree

\rm \:  =  \:\dfrac{1}{4}  \times \dfrac{1}{2}

\rm \:  =  \:\dfrac{1}{8}

Hence,

\rm :\longmapsto\:\boxed{ \tt{ \: cos40\degree cos100\degree cos160\degree =  \frac{1}{8} \: }}

More Identities to know :-

\boxed{ \tt{ \: sinxsin(60\degree  - x)sin(60\degree  + x) =  \frac{1}{4}sin3x \: }}

\boxed{ \tt{ \: tanxtan(60\degree  - x)tan(60\degree  + x) =  tan3x \: }}

\boxed{ \tt{ \: cosx \: cos2x \: cos {2}^{2}x -  - cos {2}^{n}x =  \frac{sin {2}^{n + 1} x}{ {2}^{n + 1}sinx}}}

Similar questions