iv) Find a vector which is parallel to v=i-2;
and has a magnitude 10
Answers
Answered by
2
Answer:
The vector is 2\sqrt{5} (\hat i-2\hat j)25(i^−2j^)
Explanation:
Given vector
\vec v=\hat i-2\hat jv=i^−2j^
Unit vector in the direction of vector v
\hat v=\frac{\hat i-2\hat j}{\sqrt{1^2+(-2)^2} }v^=12+(−2)2i^−2j^
\implies \hat v=\frac{\hat i-2\hat j}{\sqrt{5} }⟹v^=5i^−2j^
Let the required vector be a
then \vec a=|\vec a|\hat aa=∣a∣a^
where \hat aa^ is the unit vector in the direction of \vec aa and |\vec a|∣a∣ is the magnitude of \vec aa
Since v and a vectors are parallel the unit vectors will be same
Therefore,
\vec a=10\times \frac{\hat i-2\hat j}{\sqrt{5} }a=10×5i^−2j^
\implies \vec a=2\sqrt{5} (\hat i-2\hat j)⟹a=25(i^−2j^)
Thus, the required vector is 2\sqrt{5} (\hat i-2\hat j)25(i^−2j^)
Similar questions