JEE ADVANCED MATHS QUESTION SEPTEMBER 2020
Answers
AnswEr:-
From the graph given in attachment,
Minimum is at \theta = π/12 ,5π/12.
Hence,
Hence,
• Answer : - 1/2
_________________________________
Let the function f : (0, π) → R be defined by
f(θ) = (sinθ + cosθ)² + (sinθ - cosθ)⁴
suppose the function f has a local minimum at θ precisely when θ ∈ {λ₁π , .... λ_r π} , where 0< λ₁ , ....λr < 1 Then the value of λ₁ + .... + λr is ....
solution : given f(θ) = (sinθ + cosθ)² + (sinθ - cosθ)⁴
= sin²θ + cos²θ + 2sinθ cosθ + (sin²θ + cos²θ - 2sinθcosθ)²
= 1 + sin2θ + (1 - sin2θ)²
= 1 + sin2θ + 1 + sin²2θ - 2sin2θ
= 1 + sin²2θ - sin2θ
now differentiating w.r.t θ we get,
f'(θ) = 4sin2θ cos2θ - 2cos2θ
= 2cos2θ(2sin2θ - 1)
at f'(θ) = 0,
cos2θ = 0 ⇒ θ = (2m + 1)π/4
and , sin2θ = 1/2 ⇒θ = 1/12 (2nπ + π) and 1/12(2nπ + 5π)
so, θ = π/12, π/4, 5π/12 ,
again differentiating w.r.t θ we get,
f"(θ) = -4sin2θ(2sin2θ -1) + 2cos2θ × 4cos2θ
at θ = π/12, 5π/12 , f"(θ) > 0
so, f(θ) is minimum at θ = π/12 , 5π/12
Therefore λ₁π = π/12 ⇒λ₁ = 1/12
and λ₂π = 5π/12 ⇒λ₂ = 5/12
now the value of (λ₁ + λ₂) = 1/12 + 5/12 = 1/2