Physics, asked by StrongGirl, 7 months ago

JEE ADVANCED PHYSICS QUESTION SEPTEMBER 2020

Attachments:

Answers

Answered by shadowsabers03
3

At equilibrium, the restoring force in the spring system gets balanced by the electrostatic force.

\sf{\longrightarrow kl=F_q}

\sf{\longrightarrow kl=qE}

Along axial line, \sf{E=\dfrac{2Kp}{l^3}} where \sf{K=\dfrac{1}{4\pi\epsilon_0}.} Then,

\sf{\longrightarrow kl=\dfrac{2Kpq}{l^3}}

\sf{\longrightarrow k=\dfrac{2Kpq}{l^4}}

As the point mass is slightly displaced by \sf{\Delta l,} the net force in the system,

\sf{\longrightarrow F_{net}=F_q\,\!'-k(l+\Delta l)}

\sf{\longrightarrow F_{net}=\dfrac{2Kpq}{(l+\Delta l)^3}-k(l+\Delta l)}

\sf{\longrightarrow F_{net}=\dfrac{2Kpq}{l^3}\left[1+\dfrac{\Delta l}{l}\right]^{-3}-k(l+\Delta l)}

As \sf{\Delta l<<l,}

\sf{\longrightarrow F_{net}=kl\left[1-\dfrac{3\Delta l}{l}\right]-k(l+\Delta l)}

\sf{\longrightarrow F_{net}=-4k\Delta l}

That is,

\sf{\longrightarrow -k'\Delta l=-4k\Delta l}

\sf{\longrightarrow k'=4k}

Then, frequency,

\sf{\longrightarrow \nu=\dfrac{1}{2\pi}\sqrt{\dfrac{k'}{m}}}

\sf{\longrightarrow \dfrac{1}{\delta}\sqrt{\dfrac{k}{m}}=\dfrac{1}{\pi}\sqrt{\dfrac{k}{m}}}

\sf{\longrightarrow\underline{\underline{\delta=\pi}}}

Similar questions