JEE Mains maths question is attached
Answers
Answer:
Solving the 2 equations we get:
.
Also, it is given that: arg(z₁ - z₂) = π/3
Substituting this in Eqn. 3 we get:
This is the required answer.
Answer:
Given:∣z
1
−1∣=Re(z
1
)and∣z
2
−1∣=Re(z
2
)
Let’s assumez
1
=x
1
+iy
1
andz
2
=x
2
+iy
2
arrow∣x
1
+iy
1
−1∣=x
1
arrow(x
1
−1)
2
+y
1
2
=(x
1
)
2
arrowx
1
2
+1−2x
1
+y
1
2
=x
1
2
arrowy
1
2
−2x
1
+1=0arrowEqn.1
Similarly following the same process for Second equation we get:
arrowy
1
2
+1−2x
2
2
=0arrowEqn.2
Solving the 2 equations we get:
\begin{gathered}arrow y_1^2 + 1 - 2x_1 = y_2^2 + 1 - 2x_2 \\\\arrow y_1^2 - y_2^2 = 2x_1 - 2x_2\\\\arrow ( y_1 + y_2)(y_1 - y_2) = 2 ( x_1 - x_2 )\\\\arrow ( y_1 + y_2) = \dfrac{2 (x_1 - x_2)}{y_1 - y_2} \;\:\:arrow Eqn.\:3\end{gathered}
arrowy
1
2
+1−2x
1
=y
2
2
+1−2x
2
arrowy
1
2
−y
2
2
=2x
1
−2x
2
arrow(y
1
+y
2
)(y
1
−y
2
)=2(x
1
−x
2
)
arrow(y
1
+y
2
)=
y
1
−y
2
2(x
1
−x
2
)
arrowEqn.3
.
Also, it is given that: arg(z₁ - z₂) = π/3
\begin{gathered}arrow tan^{-1} [\frac{Im (z_1 - z_2)}{Re(z_1 - z_2)}]\\\\arrow tan^{-1} ( \dfrac{ y_1 - y_2}{x_1 - x_2}) = \dfrac{ \pi}{3}\\\\arrow \dfrac{ y_1 - y_2}{x_1 - x_2} = tan \dfrac{\pi}{3}\\\\arrow \dfrac{ y_1 - y_2}{x_1 - x_2} = \sqrt{3}\\\\arrow \dfrac{x_1 - x_2}{y_1-y_2} = \dfrac{1}{\sqrt{3}}\end{gathered}
arrowtan
−1
[
Re(z
1
−z
2
)
Im(z
1
−z
2
)
]
arrowtan
−1
(
x
1
−x
2
y
1
−y
2
)=
3
π
arrow
x
1
−x
2
y
1
−y
2
=tan
3
π
arrow
x
1
−x
2
y
1
−y
2
=
3
arrow
y
1
−y
2
x
1
−x
2
=
3
1
Substituting this in Eqn. 3 we get:
\boxed{\bf{( y_1 + y_2 ) = \dfrac{2}{\sqrt{3}}}}
(y
1
+y
2
)=
3
2
This is the required answer.
Step-by-step explanation:
mark as BRAINLEST ANSWER please please