Math, asked by StrongGirl, 9 months ago

JEE Mains Maths question is attached

Attachments:

Answers

Answered by shadowsabers03
19

Since p\to q\equiv\lnot p\lor q,

\longrightarrow (p\land q)\to(\lnot q\lor r)\equiv \lnot(p\land q)\lor(\lnot q\lor r)

Since \lnot(p\land q)\equiv\lnot p\lor\lnot q,

\longrightarrow (p\land q)\to(\lnot q\lor r)\equiv (\lnot p\lor \lnot q)\lor(\lnot q\lor r)

The brackets can be ignored now.

\longrightarrow (p\land q)\to(\lnot q\lor r)\equiv\lnot p\lor \lnot q\lor\lnot q\lor r

\longrightarrow (p\land q)\to(\lnot q\lor r)\equiv\lnot p\lor( \lnot q\lor\lnot q)\lor r

Since p\lor p\equiv p,

\longrightarrow (p\land q)\to(\lnot q\lor r)\equiv\lnot p\lor \lnot q\lor r

Given that the truth value of this statement is false.

Then the three statements \lnot p,\ \lnot q and r should also be false, since they're connected by OR.

\longrightarrow \lnot p=F\quad\implies\quad\underline{\underline{p=T}}

\longrightarrow \lnot q=F\quad\implies\quad\underline{\underline{q=T}}

\longrightarrow\underline{\underline{r=F}}

Thus the truth values of p,\ q and r are \bf{T,\ T,\ F} respectively.

Hence (1) is the answer.

Answered by Anonymous
4

p,q,r \: are \: statements \: with \: truth \: values \: T,F,T

respectively

consider

(~p ∨ q) ^ ~ r \implies p

= ( F ∨ F) ^ F \implies T

= (F ^ F) \implies T

= F \implies T = ~(F) ∨ T = T ∨ T = T

Clearly, option A is answer.

Similar questions