Math, asked by StrongGirl, 11 months ago

JEE MAINS MATHS QUESTION SEPTEMBER 2020

Attachments:

Answers

Answered by pulakmath007
13

\displaystyle\huge\red{\underline{\underline{Solution}}}

GIVEN

 \displaystyle \: y_1 =  {tan}^{ - 1}  \bigg(  \:  \dfrac{ \sqrt{1 +  {x}^{2}  }  - 1}{x}  \bigg)

And

 \displaystyle \: y_2 =  {tan}^{ - 1}  \bigg(  \:  \dfrac{2x \sqrt{1  -   {x}^{2}  }  }{1 - 2 {x}^{2} }  \bigg)

TO DETERMINE

 \displaystyle \:  \dfrac{dy_1}{dy_2}

EVALUATION

 \displaystyle \: y_1 =  {tan}^{ - 1}  \bigg(  \:  \dfrac{ \sqrt{1 +  {x}^{2}  }  - 1}{x}  \bigg)

Let

x =  \tan \theta

Then

 \displaystyle \: y_1 =  {tan}^{ - 1}  \bigg(  \:  \dfrac{ \sqrt{1 +  { \tan }^{2}  \theta}  - 1}{ \tan \theta }  \bigg)

 \implies \:  \displaystyle \: y_1 =  {tan}^{ - 1}  \bigg(  \:  \dfrac{ { \sec }  \theta  - 1}{ \tan \theta }  \bigg)

 \implies \:  \displaystyle \: y_1 =  {tan}^{ - 1}  \bigg(  \:  \dfrac{ { 1 - \cos }  \theta  }{ \sin \theta }  \bigg)

 \implies \:  \displaystyle \: y_1 =  {tan}^{ - 1}  \bigg(  \: \tan \frac{ \theta}{2}   \bigg)

 \implies \:  \displaystyle \: y_1 =    \frac{ \theta}{2}

 \implies \:  \displaystyle \: y_1 =  \frac{1}{2}  \:  {tan}^{ - 1}x

So

 \displaystyle \:  \dfrac{dy_1}{dx}  =  \frac{1}{2}  \times  \frac{1}{1 +  {x}^{2} }

Now

 \displaystyle \: y_2 =  {tan}^{ - 1}  \bigg(  \:  \dfrac{2x \sqrt{1  -   {x}^{2}  }  }{1 - 2 {x}^{2} }  \bigg)

Let

x =  \sin \alpha

So

 \displaystyle \: y_2 =  {tan}^{ - 1}  \bigg(  \:  \dfrac{2 \sin \alpha  \sqrt{1  -   {\sin }^{2} \alpha }  }{1 - 2 { \sin}^{2}\alpha }  \bigg)

 \implies \:  \displaystyle \: y_2 =  {tan}^{ - 1}  \bigg(  \:  \dfrac{2 \sin \alpha  \cos  \alpha   }{ \cos2\alpha }  \bigg)

 \implies \:  \displaystyle \: y_2 =  {tan}^{ - 1}  \bigg(  \:  \dfrac{ \sin2 \alpha     }{ \cos2\alpha }  \bigg)

 \implies \:  \displaystyle \: y_2 =  {tan}^{ - 1}  \bigg(  { \tan2 \alpha     } \bigg)

 \implies \:  \displaystyle \: y_2 =    2 \alpha

 \implies \:  \displaystyle \: y_2 = 2 { \sin}^{ - 1}  x

So

 \displaystyle \:  \dfrac{dy_2}{dx}  =  \frac{2}{ \sqrt{1 -  {x}^{2} } }

Hence

 \displaystyle \:  \dfrac{dy_1}{dy_2}  =  \frac{1}{4}  \frac{ \sqrt{ 1 -  {x}^{2} } }{1 +  {x}^{2} }

Similar questions