Math, asked by 545abul, 2 months ago

JEE MAINS SOLVE THE ATTACHED QUESTION ❓​

Attachments:

Answers

Answered by VεnusVεronίcα
54

 \qquad \tt \dashrightarrow \:  \dfrac{1 +  {cot}^{o} }{ {cot}^{o} }  = 1

 \:

Also,

 \qquad \tt \dashrightarrow \: A + B =  {45}{ \degree}

 \:

Then :

 \tt \qquad \dashrightarrow \: \bigg (1 + tanA \bigg) \bigg(1 + tanB \bigg) = 2

   \:

So :

 \tt \qquad \dashrightarrow \:  \bigg(1 + tan  \: {1}^{o}  \bigg) \:  \bigg(1 + tan \:  {44}^{o}  \bigg) \: \bigg(1 + tan  \:  {2}^{o}  \bigg) \bigg(1 +tan  \:  {43}^{o}  \bigg) \: . \: . \: . \: . \: . \: . \:  \bigg(1 + tan  \: {22}^{o}  \bigg) \:  \bigg(1 + tan \:  {23}^{o} \bigg) \:  \bigg(1 + tan \:  {45}^{o}  \bigg) =  {2}^{n}

 \:

 \qquad \tt \dashrightarrow \:  {(2)}^{23}  =  {(2)}^{n}

 \:

 \tt \qquad \dashrightarrow \: n = 23

 \:

Therefore, the value of ‘n’ is 23 (OptionB).

 \\

\qquad_______________

 \\

Know more :

 \:

 \qquad  \bigstar \:  \: \tt sin \: 2x  = 2 \: sinx \: cosx =  \dfrac{2 \: tanx}{1 +  {tan}^{2}x }

 \:

 \qquad \tt \bigstar \:  \: tan \: 2x =  \dfrac{2 \: tanx}{1 -  {tan}^{2}x }

 \:

  \qquad \tt \bigstar \:  \: tan \dfrac{x}{2}  =  \pm \sqrt{ \dfrac{1 - cosx}{1 + cosx} }

Similar questions