JEE QUESTION SOLVE IT DUDE....
Answers
First, make powers of 2 and those of 3 in the limit separately into two groups as follows:
We know,
- sum of first positive odd numbers is
- sum of first positive even numbers is
Since each group contained terms,
Let us evaluate each limit.
Dividing both numerator and denominator by
Since as
And,
Dividing both numerator and denominator by
Since as
Then (1) becomes,
Hence 6 is the answer.
Answer:
First, make powers of 2 and those of 3 in the limit separately into two groups as follows:
\displaystyle\longrightarrow L=\lim_{n\to\infty}\left((2\times2^3\times2^5\times\dots\times2^{n-1})\times(3^2\times3^4\times3^6\times\dots\times3^n)\right)^{\frac{1}{n^2+1}}⟶L=
n→∞
lim
((2×2
3
×2
5
×⋯×2
n−1
)×(3
2
×3
4
×3
6
×⋯×3
n
))
n
2
+1
1
\displaystyle\longrightarrow L=\lim_{n\to\infty}\left(\left(2^{1+3+5+\,\dots\,+(n-1)}\right)\times\left(3^{2+4+6+\,\dots\,+n}\right)\right)^{\frac{1}{n^2+1}}⟶L=
n→∞
lim
((2
1+3+5+…+(n−1)
)×(3
2+4+6+…+n
))
n
2
+1
1
We know,
sum of first nn positive odd numbers is n^2.n
2
.
sum of first nn positive even numbers is n^2+nn
2
+n
Since each group contained \dfrac{n}{2}
2
n
terms,
\displaystyle\longrightarrow L=\lim_{n\to\infty}\left(2^{\left(\frac{n}{2}\right)^2}\times3^{\left(\frac{n}{2}\right)^2+\frac{n}{2}}\right)^{\frac{1}{n^2+1}}⟶L=
n→∞
lim
(2
(
2
n
)
2
×3
(
2
n
)
2
+
2
n
)
n
2
+1
1
\displaystyle\longrightarrow L=\lim_{n\to\infty}\left(2^{\frac{n^2}{4}}\times3^{\frac{n^2+2n}{4}}\right)^{\frac{1}{n^2+1}}⟶L=
n→∞
lim
(2
4
n
2
×3
4
n
2
+2n
)
n
2
+1
1
\displaystyle\longrightarrow L=\lim_{n\to\infty}\left[\left(2^{\frac{n^2}{4}}\right)^{\frac{1}{n^2+1}}\times\left(3^{\frac{n^2+2n}{4}}\right)^{\frac{1}{n^2+1}}\right]⟶L=
n→∞
lim
[(2
4
n
2
)
n
2
+1
1
×(3
4
n
2
+2n
)
n
2
+1
1
]
\displaystyle\longrightarrow L=\lim_{n\to\infty}2^{\frac{n^2}{4(n^2+1)}}\times\lim_{n\to\infty}3^{\frac{n^2+2n}{4(n^2+1)}}⟶L=
n→∞
lim
2
4(n
2
+1)
n
2
×
n→∞
lim
3
4(n
2
+1)
n
2
+2n
\longrightarrow L=2^{\displaystyle\lim_{n\to\infty}\frac{n^2}{4(n^2+1)}}\ \times\ 3^{\displaystyle\lim_{n\to\infty}\frac{n^2+2n}{4(n^2+1)}}\quad\quad\dots(1)⟶L=2
n→∞
lim
4(n
2
+1)
n
2
× 3
n→∞
lim
4(n
2
+1)
n
2
+2n
…(1)
Let us evaluate each limit.
\displaystyle\longrightarrow\lim_{n\to\infty}\dfrac{n^2}{4(n^2+1)}=\dfrac{1}{4}\lim_{n\to\infty}\dfrac{n^2}{n^2+1}⟶
n→∞
lim
4(n
2
+1)
n
2
=
4
1
n→∞
lim
n
2
+1
n
2
Dividing both numerator and denominator by \dfrac{1}{n^2},
n
2
1
,
\displaystyle\longrightarrow\lim_{n\to\infty}\dfrac{n^2}{4(n^2+1)}=\dfrac{1}{4}\lim_{n\to\infty}\dfrac{\left(\frac{n^2}{n^2}\right)}{\left(\frac{n^2+1}{n^2}\right)}⟶
n→∞
lim
4(n
2
+1)
n
2
=
4
1
n→∞
lim
(
n
2
n
2
+1
)
(
n
2
n
2
)
\displaystyle\longrightarrow\lim_{n\to\infty}\dfrac{n^2}{4(n^2+1)}=\dfrac{1}{4}\lim_{n\to\infty}\dfrac{1}{1+\frac{1}{n^2}}⟶
n→∞
lim
4(n
2
+1)
n
2
=
4
1
n→∞
lim
1+
n
2
1
1
Since \dfrac{1}{n^2}\to0
n
2
1
→0 as n\to\infty,n→∞,
\displaystyle\longrightarrow\lim_{n\to\infty}\dfrac{n^2}{4(n^2+1)}=\dfrac{1}{4}\cdot\dfrac{1}{1+0}⟶
n→∞
lim
4(n
2
+1)
n
2
=
4
1
⋅
1+0
1
\displaystyle\longrightarrow\lim_{n\to\infty}\dfrac{n^2}{4(n^2+1)}=\dfrac{1}{4}⟶
n→∞
lim
4(n
2
+1)
n
2
=
4
1
And,
\displaystyle\longrightarrow\lim_{n\to\infty}\dfrac{n^2+2n}{4(n^2+1)}=\dfrac{1}{4}\lim_{n\to\infty}\dfrac{n^2+2n}{n^2+1}⟶
n→∞
lim
4(n
2
+1)
n
2
+2n
=
4
1
n→∞
lim
n
2
+1
n
2
+2n
Dividing both numerator and denominator by \dfrac{1}{n^2},
n
2
1
,
\displaystyle\longrightarrow\lim_{n\to\infty}\dfrac{n^2+2n}{4(n^2+1)}=\dfrac{1}{4}\lim_{n\to\infty}\dfrac{\left(\frac{n^2+2n}{n^2}\right)}{\left(\frac{n^2+1}{n^2}\right)}⟶
n→∞
lim
4(n
2
+1)
n
2
+2n
=
4
1
n→∞
lim
(
n
2
n
2
+1
)
(
n
2
n
2
+2n
)
\displaystyle\longrightarrow\lim_{n\to\infty}\dfrac{n^2+2n}{4(n^2+1)}=\dfrac{1}{4}\lim_{n\to\infty}\dfrac{1+\frac{2}{n}}{1+\frac{1}{n^2}}⟶
n→∞
lim
4(n
2
+1)
n
2
+2n
=
4
1
n→∞
lim
1+
n
2
1
1+
n
2
Since \dfrac{1}{n^2}\to0
n
2
1
→0 as n\to\infty,n→∞,
\displaystyle\longrightarrow\lim_{n\to\infty}\dfrac{n^2+2n}{4(n^2+1)}=\dfrac{1}{4}\cdot\dfrac{1+0}{1+0}⟶
n→∞
lim
4(n
2
+1)
n
2
+2n
=
4
1
⋅
1+0
1+0
1
→0 as n\to\infty,n→∞,
\displaystyle\longrightarrow\lim_{n\to\infty}\dfrac{n^2+2n}{4(n^2+1)}=\dfrac{1}{4}\cdot\dfrac{1+0}{1+0}⟶
n→∞
lim
4(n
2
+1)
n
2
+2n
=
4
1
⋅
1+0
1+0
\displaystyle\longrightarrow\lim_{n\to\infty}\dfrac{n^2+2n}{4(n^2+1)}=\dfrac{1}{4}⟶
n→∞
lim
4(n
2
+1)
n
2
+2n
=
4
1
Then (1) becomes,
\longrightarrow L=2^{\frac{1}{4}}\times3^{\frac{1}{4}}⟶L=2
4
1
×3
4
1
\longrightarrow L=6^{\frac{1}{4}}⟶L=6
4
1
$$\longrightarrow\underline{\underline{L^4=6}}}}$$
Hence 6 is the answer.