Math, asked by SmileQueen, 1 year ago

⚓⚓keep calm ⚓⚓

⏩important question class10⭐⭐




♦♦♦♦♦♦♦♦

find the missing frequency in the following frequency distribution if the mean is 50.25 and the total number of student in the 80

marks obtained (%) 25,35,45,55,65,75,85,number of students 7,23,x,15,10,y,5



⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐


✨✨✨✨dont spamming ✨✨✨

⭐⭐please spammer ⭐⭐​

Answers

Answered by cutie1402
1
hey mate here is ur solution,

Hope it helps u...

Plz mark it brainliest...
Attachments:

SmileQueen: thankuuuuuuuu✨
cutie1402: wlcmmmmmmm smile queen...❤
SmileQueen: ☺.
Answered by TRISHNADEVI
22
 \underline{ \underline{ \bold{ \red{ \: \: SOLUTION\: \: }}}}

 \bold{Given,} \\ \\ \bold{Mean = 50.25} \\ \\ \bold{ = > \frac{ \sum \: fx}{ \sum \: f} = 50.25} \\ \\ \bold{Total \: \: frequency ,\: \: \sum \: f = 80}

 \bold{From \: \: the \: \: above \: \: table \: ;\: we \: \: get,} \\ \\ \boxed{ \bold{ \sum \: fx =2880 + 45x + 75y }} \\ \\

\underline{ \bold{According \: \: to \: \: question,}} \\ \\ \bold{ \frac{ \sum \: fx}{ \sum \: f } = 50.25} \\ \\ \bold{ = > \frac{2880 + 45x + 75y}{80} = 50.25} \\ \\ \bold{ = > 2880 + 45x + 75y= 4020} \\ \\ \bold{ = > 45x + 75y = 1140} \\ \\ \bold{ = > 3x + 5y = 76 \: \: - - - - > (1)}

 \bold{Again ,\: \: we \: \: get;} \\ \\ \bold{60 + x + y = 80} \\ \\ \bold{ = > x + y = 20 \: \: - - - - - (2)}

 \bold{(2) \times 5= > 5x + 5y = 100 \: \: - - - - - - > (3)} \\ \\ \bold{(3) - (1) = > 5x + 5y - 3x - 5y = 100 - 76} \\ \\ \bold{ = > 2x = 24} \\ \\ = > \bold{x = 12}

 \bold{(2) = > 12 + y = 20 \: \: \: \: [Putting \: \: the \: \: value \: \: of \: \: x]} \\ \\ \bold{ = > y = 4}

 \bold{The \: \: missing \: \: frequencies \: \: are \: : } \\ \\ \boxed{ \bold{x = 12 \: \:, \: \: y = 4 }}

______________________________________________________

 \mathfrak{ \red{ \: THANKS..}}
Attachments:
Similar questions