Math, asked by ᎮѕуcнσAεѕтнεтíc, 6 hours ago

Kindly Answer the questions in the attachment without spamming :)​

Attachments:

Answers

Answered by ProximaNova
83

\Large \rm \tealB{\mp\widetilde{Answer \ 1}:-}

Given:

  • P = ₹10500
  • R = 5%
  • Time = 1 year

Use the relation,

\ddag \red{\boxed{\boxed{A = P\left( 1 +\dfrac{R}{100}\right)^n}}}

\rm :\longmapsto A = 10600 \times \left(1 + \dfrac{\cancel{5}}{\cancel{100}_{20}}\right)^1

\rm :\longmapsto A = 10500 \left(1 +\dfrac{1}{20}\right)

\rm :\longmapsto A = 10500 \left( \dfrac{20 + 1}{20}\right)

\rm :\longmapsto A = 10500 \times \dfrac{21}{20}

\star\red{\boxed{\rm :\longmapsto A = 11025}}

\Large \rm \tealB{\mp\widetilde{Answer\ 2}:-}

As the interested is compounded in 3 months, for a year )12 months) it will be compounded \red{\rm 4 \ times.}

Answered by ElegantVibes
122

Solution 1:-

Given:-

  • Principal = ₹10,500
  • Rate = 5%
  • Time = 1 year

Formula:-

 { \star{ \underline{\boxed{\tt \pmb {A= P( 1 +{ \frac{R}{100}) }^{n}}}}}}

Here,

  • P stands for Principal
  • R stands for Rate
  • n stands for time

Putting the values:-

 \tt \hookrightarrow{A = 10500(1 +  {\frac{5}{100})}^{1}  }

\\

\tt \hookrightarrow{A = 10500(1 +  {\frac{\cancel5}{\cancel{100}_{20}})}^{1}  }

\\

\tt \hookrightarrow{A = 10500(  \frac  {20 + 1}{20})}

\\

\tt \hookrightarrow{A = 10500(  \frac  {21}{20})}

\\

{ \star{ \underline{\boxed{ \sf \pmb {A= ₹ \: 11025}}}}}

Solution 2:-

Given that the interest is compounded after every 3 months in a year.

[ 1 year = 12 months]

The interest will be compounded 4 times.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬


BrainlyPopularman: Awesome :)
Similar questions