Math, asked by sonikaahlawat210, 9 months ago

Kindly answer this question I will give 5 star rating and thanks and mark ur answer brainliest if u will give a proper and good answer

Attachments:

Answers

Answered by amitkumar44481
10

AnsWer :

( c ) 13. ✓

QuestioN :

11. If ab = 6 and a + b = 5 then the value of ( a² + b² ) is

  • ( a ) 11.
  • ( b ) 12.
  • ( c ) 13.
  • ( d ) 14.

To FinD :

The value of a² + b² is.

SolutioN :

 \tt \dagger \:  \:  \:  \:  \: a + b = 5.

 \tt:  \implies a + b = 5.

Squaring both Sides.

 \tt:  \implies {(a + b )}^{2} = {5 }^{2}

We know,

  • ( a + b )² = a² + b² + 2ab.

 \tt:  \implies {a}^{2} +  {b}^{2}  + 2ab = 25.

 \tt:  \implies {a}^{2} +  {b}^{2}  + 2(6) = 25.

 \tt:  \implies {a}^{2} +  {b}^{2}  + 12 = 25.

 \tt:  \implies {a}^{2} +  {b}^{2}  = 25 - 12.

 \tt:  \implies {a}^{2} +  {b}^{2}   = 13.

Therefore, the required answer is 13 Options ( c )

\rule{200}2

MorE InformatioN :

  • ( a + b )( a - b ) = a² - b².
  • ( a + b )² = a² + b² + 2ab.
Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
81

\huge\sf\pink{Answer}

☞ Your Answer is Option C

\rule{110}1

\huge\sf\blue{Given}

✭ ab = 6

✭ a+b = 5

\rule{110}1

\huge\sf\gray{To \:Find}

◈ The Value of (a²+b²)?

\rule{110}1

\huge\sf\purple{Steps}

Given that a+b = 5, on Squaring both sides,

≫ a²+b² = 5²

≫ a²+b² = 25

We know that,

\underline{\boxed{\sf (a+b)^2 = a^2+2ab+b^2}}

On Substituting the given values,

\sf a^2+2ab+b^2 = 25

\sf a^2+b^2+2(6) = 25

\sf a^2+b^2+12 = 25

\sf a^2+b^2 = 25-12

\sf \orange{a^2+b^2 = 13}

\rule{130}{1.5}

\sf\bullet\:\red{More \ Formulas}

»» (a-b)² = a²+b²-2ab

»» (a+b)(a-b) = a²-b²

»» (a+b)³ = a³+b³+3ab(a+b)

»» (a-b)³ = a³-b³-3ab(a-b)

»» a³+b³ = (a+b)(a²+b²-ab)

»» a³-b³ = (a-b)(a²+b²+ab)

»» (a+b)² = (a-b)²+4ab

»» (a-b)² = (a+b)²-4ab

\rule{170}3

Similar questions