Math, asked by Anonymous, 3 months ago

⚠️Kindly Don't spamm⚠️
– Non-copied Answer
– Well-explained Answer

​​

Attachments:

gadlingnirmiti: In which class you are?

Answers

Answered by Sizzllngbabe
50

Answer:

To find:-

The value of k

Solution:-

 Now , f(0) =  \frac{2(0) + 1}{0 - 1}  =  \frac{1}{ - 1}  =  - 1

and  \: LHL = lim \: f(0 - h) \\  \:  \:  \:  \:  \:  \:  \:  \: h \rightarrow0

  = \frac{lim}{ h \rightarrow0}    \frac{ \sqrt{1 - kh} -  \sqrt{1  +  kh}  }{ - h}

  \sf=  \frac{lim}{h \rightarrow0}  \frac{ \sqrt{1 - kh }  +  \sqrt{1 + kh}  }{ - h}  \times  \frac{ \sqrt{1 - kh} +  \sqrt{1 + kh}  }{ \sqrt{1 - kh} +  \sqrt{1 + kh}  }

 \sf \:  \frac{lim}{ h \rightarrow0}  \:  \frac{(1 - kh) - (1  + kh)}{ - h( \sqrt{1 - kh} +  \sqrt{1 + kh} ) }  \\ \\  \sf[ (a + b)(a - b) =  {a}^{2} -  {b}^{2}  ]

 \sf \:  =  \frac{lim}{ h \rightarrow0}  \frac{ - 2kh}{ - h( \sqrt{1 - kh} +  \sqrt{1 + kh})  }

 \sf \:  =  \frac{lim}{ h \rightarrow0}  \frac{2k}{ \sqrt{ 1 - kh} +  \sqrt{1  + kh}  }  =  \frac{2k}{1 + 1}  =  \frac{2k}{2}  = 2

Since , f(x) is constant at x= 0.

 \therefore \: f(0) = LHL ⇒ - 1 = k

⇒k =  - 1

Answered by BrainlyPopularman
25

GIVEN :

 \\ \implies \bf F(x) =  \bigg\{ \dfrac{ \sqrt{1 + kx} -  \sqrt{1 - kx} }{x}  \:,\:  if - 1 \leqslant x < 0 \\

 \\ \implies \bf F(x) =  \bigg\{ \dfrac{2x + 1}{x - 1}  \:,\:  if  \:  \: 0 \leqslant x <1\\

• Function F(x) continuous at x = 0.

TO FIND :

• Value of 'k' = ?

SOLUTION :

• Let's find the value of F(x) at x=0 –

 \\ \implies \bf F(0) =\dfrac{2(0) + 1}{(0)- 1}\\

 \\ \implies \bf F(0) =\dfrac{1}{- 1}\\

 \\ \longrightarrow \large \red{ \boxed{ \bf F(0) = - 1}}\\

• Now let's find R.H.L. –

 \\ \implies \bf R.H.L. =  \lim_{x \to {0}^{ + }}\dfrac{2x + 1}{x - 1}\\

 \\ \implies \bf R.H.L. =  \lim_{h \to 0}\dfrac{2( 0+ h) + 1}{(0 + h)- 1}\\

 \\ \implies \bf R.H.L. =  \lim_{h \to 0}\dfrac{2h+ 1}{h- 1}\\

 \\ \implies \bf R.H.L. =\dfrac{2(0)+ 1}{(0)- 1}\\

 \\ \implies \bf R.H.L. =\dfrac{ 1}{- 1}\\

 \\ \longrightarrow \large \red{ \boxed{ \bf R.H.L. = - 1}}\\

• Now let's find L.H.L. –

 \\ \implies \bf L.H.L. =  \lim_{x \to {0}^{ - }} \dfrac{ \sqrt{1 + kx} -  \sqrt{1 - kx} }{x}\\

 \\ \implies \bf L.H.L. =  \lim_{h\to 0} \dfrac{ \sqrt{1 + k(0 - h)} -  \sqrt{1 - k(0 - h)} }{(0 - h)}\\

 \\ \implies \bf L.H.L. =  \lim_{h\to 0} \dfrac{ \sqrt{1 - kh} -  \sqrt{1 + kh} }{- h}\\

 \\ \implies \bf L.H.L. =  \lim_{h\to 0} \dfrac{ \sqrt{1 - kh} -  \sqrt{1 + kh} }{- h} \times  \dfrac{\sqrt{1 - kh} + \sqrt{1 + kh}}{\sqrt{1 - kh} + \sqrt{1 + kh}} \\

 \\ \implies \bf L.H.L. =  \lim_{h\to 0} \dfrac{ (\sqrt{1 - kh})^{2}  - ( \sqrt{1 + kh}) ^{2}  }{- h(\sqrt{1 - kh} + \sqrt{1 + kh})}\\

 \\ \implies \bf L.H.L. =  \lim_{h\to 0} \dfrac{(1 - kh) - (1 + kh)}{- h(\sqrt{1 - kh} + \sqrt{1 + kh})}\\

 \\ \implies \bf L.H.L. =  \lim_{h\to 0} \dfrac{1 - kh - 1 - kh}{- h(\sqrt{1 - kh} + \sqrt{1 + kh})}\\

 \\ \implies \bf L.H.L. =  \lim_{h\to 0} \dfrac{- 2kh}{- h(\sqrt{1 - kh} + \sqrt{1 + kh})}\\

 \\ \implies \bf L.H.L. =  \lim_{h\to 0} \dfrac{2k}{(\sqrt{1 - kh} + \sqrt{1 + kh})}\\

 \\ \implies \bf L.H.L. =\dfrac{2k}{(\sqrt{1 - k(0)} + \sqrt{1 + k(0)})}\\

 \\ \implies \bf L.H.L. =\dfrac{2k}{(\sqrt{1} + \sqrt{1})}\\

 \\ \implies \bf L.H.L. =\dfrac{2k}{2}\\

 \\ \implies \bf L.H.L. =k\\

• By the condition of continuous function –

 \\ \implies  \red{\bf L.H.L. =R.H.L. = F(0)}\\

 \\ \implies\bf k= - 1 =  - 1\\

• By first & second condition –

 \\ \implies\bf k=  - 1\\

 \\ \implies \large\red{ \boxed{\bf k=-1}}\\


Anonymous: Adorable (✯ᴗ✯)
BrainlyPopularman: Thanks
amansharma264: Awesome
Similar questions