Math, asked by hamzarehman447, 1 day ago

Kindly solve Angela question

Attachments:

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given that,

  • Selling Price of the purse including sale tax = $ 138.60

  • Rate of Sale tax = 10 %

Let assume that the price of the bag without sale tax be x.

So,

\rm \: x + 10\% \times x = 138.60 \\

\rm \: x +  \dfrac{10}{100}  \times x = 138.60 \\

\rm \: x +  \dfrac{x}{10} = 138.60 \\

\rm \: \dfrac{10x + x}{10} = 138.60 \\

\rm \: \dfrac{11x}{10} = 138.60 \\

\rm \: 11x = 1386 \\

\rm\implies \:x = 126 \\

So, Selling Price of purse without sale tax = 126

Now, we have to find the Marked Price of the purse.

We have

  • Selling Price of purse = $ 126

  • Discount % = 30 %

We know,

\boxed{ \rm{ \:Marked \: Price =  \frac{100 \times Selling \: Price}{100 - Discount\%}  \: }} \\

So, on substituting the values, we get

\rm \: Marked \: Price \:  =  \: \dfrac{100 \times 126}{100 - 30}  \\

\rm \: Marked \: Price \:  =  \: \dfrac{12600}{70}  \\

\rm\implies \:Marked \: Price \:  =  \: 180 \\

So, Original price of the purse is $ 180.

So, option (E) is correct.

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{Gain = \sf S.P. \: – \: C.P.} \\ \\ \bigstar \:\bf{Loss = \sf C.P. \: – \: S.P.} \\ \\ \bigstar \: \bf{Gain \: \% = \sf \Bigg( \dfrac{Gain}{C.P.} \times 100 \Bigg)\%} \\ \\ \bigstar \: \bf{Loss \: \% = \sf \Bigg( \dfrac{Loss}{C.P.} \times 100 \Bigg )\%} \\ \\ \\ \bigstar \: \bf{S.P. = \sf\dfrac{(100+Gain\%) or(100-Loss\%)}{100} \times C.P.} \\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions