Math, asked by adityaroy120, 1 year ago

kindly solve if the harmonic mean and geometric mean of two positive numbers are in the ratio 4:5 then the two numbers are in the ratio ?​

Answers

Answered by Brainlyconquerer
20

Answer:

Numbers are in ratio 4:1

Step-by-step explanation:

Given :

The harmonic mean and geometric mean of two positive numbers are in the ratio = 4:5

Both are positive numbers

To find : The ratio in which the numbers are

Let the numbers be Ka and a

so, a> 0 as number is positive.

Apply relation for G.M

g.m =  {(ka \times a)}^{ \frac{1}{2} }  \\  \\  = a \sqrt{ka}

Now apply relation for H.M

h =  \frac{2(ka)a}{ka + a} \\  \\   =  \frac{2(ka)a}{a(k + 1)}  \\  \\  =  \frac{2ka}{k + 1}

Now using the given Ratio relation

 \frac{h.m}{g.m}  =  \frac{4}{5}

Put the values

\huge{ \frac{ \frac{2ka}{k + 1} }{ a\sqrt{k} }  =  \frac{4}{5} } \\  \\  \huge{  \frac{2ka}{(k + 1) \times (a \sqrt{k}) } =  \frac{4}{5}   }\\  \\  \huge{ \frac{2 \sqrt{k} }{k + 1}  =  \frac{4}{5} } \\  \\ \huge{5(2 \sqrt{k} ) = 4(k + 1)} \\  \\ \huge{ 10 \sqrt{k}  = 4k + 4 }\\  \\

Now divide by 2 both sides

5 \sqrt{k}  = 2k + 2 \\  \\ 2k - 5 \sqrt{k}  + 2 = 0 \\  \\

°•° Solve this Quadratic equation

•°• Apply Quadratic Formula

 \sqrt{k}  =  \frac{5 \pm  \sqrt{ {5}^{2} -  {4}^{2}  } }{2 \times 2}  \\  \\  =  \frac{5 \pm  \sqrt{25 - 16} }{4}  \\  \\  =  \frac{5 \pm  \sqrt{9} }{4}  \\  \\  =   \frac{5 \pm 3}{4}

Finally, we get

 \sqrt{k}  =  \frac{5 \pm 3}{4}

Two values of k are

•Taking +ve sign

 \sqrt{k}  =  \frac{5 + 3}{4}  =  \frac{8}{4}  = 2 \\  \\  \sqrt{k}  = 2 \\  \\ k = 4

Next root,

•Taking -ve sign

 \sqrt{k}  =  \frac{5 - 3}{4}  =  \frac{1}{2}  \\  \\  \sqrt{k}  =  \frac{1}{2}  \\  \\ k =  \frac{1}{4}

Now A/c to question

•°•Required Ratio  =  \frac{4a}{ a }  =  \frac{4}{1}

•°• The numbers are in ratio 4:1

\rule{200}{1}

\boxed{\underline{\bold{\mathsf{Formula \: used}}}}

◾ Geometric mean ={(a \times b) }^{ \frac{1}{2} }

◾Harmonic mean  =  \frac{2ab}{a + b}

◾Quadratic formula = \frac{b \pm  \sqrt{ {b}^{2} - 4ac } }{2a}

Where a,b c are respective co-efficients

Similar questions