Math, asked by Anonymous, 7 months ago

Kindly Solve it with a proper explanation :-)

#No spams :)


Attachments:

Answers

Answered by TakenName
13

Before we solve the problem

Sure, we may find the value of the given fraction.

But we can see that

\sf{\dfrac{\cancel{(m-3)^4}}{\cancel{(m-3)^2}} +\dfrac{1}{(m-3)^2} }

\sf{=(m-3)^2+\dfrac{1}{(m-3)^2} }

After transposing sides from the given

\sf{(m-3)-\dfrac{1}{(m-3)} =1}

And we approach much faster.

Let's get to the problem

After squaring and transposing sides

\sf{(m-3)^2+\dfrac{1}{(m-3)^2} =1+2}

The Conclusion

The value is 3.

For your information.

The concepts used:

  • Identity
  • Transposing the Sides

As we see from the structure.

We should not solve the equation,

since the question requires us to use identity.

Answered by DevyaniKhushi
7

Here,

=>m -  \frac{1}{ m- 3}  = 4 \\  \\ => \frac{m(m - 3) - 1}{m - 3}  = 4 \\=>  {m}^{2}  - 3m - 1 = 4m - 12 \\  =>{m}^{2}  - 7m + 11 = 0 \\  \\=> \bigg(m  -  3.5 +   \frac{ \sqrt{5} }{2}   \bigg) \bigg(m  -  3.5 -   \frac{ \sqrt{5} }{2}\bigg ) \\  \\

From Above,

 \rm{}m = 3.5 +   \frac{ \sqrt{5} }{2}  \:  \:  \:  \:  \:  \:  or \:  \: \:  \:  \: 3.5 -  \frac{ \sqrt{5} }{2}

Now,

 \frac{ {(m - 3)}^{4}  + 1}{ {( m- 3)}^{2} }  \\  \\  \frac{ {(m - 3)}^{4} }{ {( m- 3)}^{2} }  +  \frac{1}{ {(m - 3)}^{2} }  \\  \\  {( m- 3)}^{2}  +  \frac{1}{ {(m - 3)}^{2} }

For above,

m - 3 =  > 3.5 -  \frac{ \sqrt{5} }{2}  - 3 \\  =  > 0.5 - \frac{ \sqrt{5} }{2}  \\  \\  \\ m - 3 =  > 3.5 +  \frac{ \sqrt{5} }{2}  - 3 \\  =  > 0.5 +  \frac{ \sqrt{5} }{2}

Also,

 \rm {(m - 3)}^{2} =  >  { \bigg(0.5 -  \frac{ \sqrt{5} }{2}  \bigg)}^{2} \\  \\  =  > 0.25 +  \frac{5}{4}  - 0.5 \sqrt{5}  \\  \\  =  >   \frac{1 + 5 - 2 \sqrt{5}\} }{4}  \\  \\  =  >  \frac{ 6 - 2 \sqrt{5} }{4}  =  \frac{2(3 -  \sqrt{5} )}{4}  \\ \\    \rm {(m - 3)}^{2} =  > \frac{3 -  \sqrt{5} }{2}

Thus,

 \rm {(m - 3)}^{2}  +  \frac{1}{ {(m - 3)}^{2} }  \\  \\  =  >  { \bigg( \frac{3 -  \sqrt{5} }{2} \bigg)}^{}  +  \frac{1}{ {\bigg( \frac{3 -  \sqrt{5} }{2} \bigg)}^{} }  \\  \\  =  >  \frac{3 -  \sqrt{5} }{2}  +  \frac{2}{3 -  \sqrt{5} }  \\  \\  =  >  \frac{3 -  \sqrt{5} }{2}  + \bigg \{  \frac{2(3 +  \sqrt{5} }{(3 -  \sqrt{5} )(3 +  \sqrt{5} ) } \bigg\} \\  \\  =  >  \frac{3 -  \sqrt{5} }{2}  +  \frac{6 + 2 \sqrt{5} }{ {3}^{2} -  { (\sqrt{5} )}^{2}  }  \\  \\  =  >  \frac{3 -  \sqrt{5} }{2}  +  \frac{2(3 +  \sqrt{5} )}{9 - 5}  \\  \\  =  >  \frac{3 -  \sqrt{5} }{2}  +  \frac{2(3 +  \sqrt{5}) }{4}  \\  \\  =  >  \frac{3 -  \sqrt{5} }{2}  +  \frac{3 +  \sqrt{5} }{2}  \\  \\  =  >  \frac{3 -  \cancel{\sqrt{5}} +  3 +   \cancel {\sqrt{5} } }{2}  \\  \\  =  >  \frac{6}{2}  \:  \:  \:  = \red {3}

Hence,

  • The required value is 3
Similar questions