Math, asked by IMonaLisaI, 6 months ago

Kindly solve the above problems!

I need it urgently!

Topic:- Trigonometry​

Attachments:

Answers

Answered by Anonymous
43

AnswEr :

Given Expression,

 \sf \:  \dfrac{ {cot}^{2}30 + 4 { sin }^{2} 45  + 3 {cosec}^{2} 60 + 5 {cos}^{2}90 }{cosec \: 30 + sec \: 60  -  {tan}^{2}60 }

Here,

\begin{array}{|c|c|c|c|c|c|}\cline{1-6} & 0 & 30 & 45 & 60 & 90 \\ \cline{1-6} \sf sin & 0 & \dfrac{1}{2} & \dfrac{1}{\sqrt{2}} & \dfrac{\sqrt{3}}{2} & 1 \\ \cline{1-6} \sf cos & 1 & \dfrac{\sqrt{3}}{2} &  \dfrac{1}{\sqrt{2}} & \dfrac{1}{2}  & 0 \\ \cline{1-6} \sf tan & 0 & \dfrac{1}{\sqrt{3}} & 1 & \sqrt{3} & \infty \\ \cline{1-6} \sf cot & \infty & \sqrt{3} & 1 & \dfrac{1}{\sqrt{3}} & 0 \\ \cline{1-6} \sf sec & 1 & \dfrac{2}{\sqrt{3}} & \sqrt{2} & 2 & \infty \\ \cline{1-6} \sf cosec & \infty & 2 & \sqrt{2} & \dfrac{2}{\sqrt{3}}  & 1 \\ \cline{1-6} \end{array}

Substituting the respective values in the above expression,

  \longrightarrow \: \sf \:  \dfrac{ (\frac{1}{ \sqrt{3} } ) {}^{2}  + 4( \frac{1}{ \sqrt{2} } ) {}^{2}  + 3( \frac{2}{ \sqrt{3} }) {}^{2}   + 5(0 {}^{2} )}{2 + 2 - ( \sqrt{3}) {}^{2}  }  \\  \\  \longrightarrow \sf \:  \dfrac{ \dfrac{1}{3}  +  \dfrac{4}{2} +  \dfrac{13}{3}  }{4 - 3}  \\  \\ \longrightarrow \sf \dfrac{7}{3}  +  4 \\  \\  \longrightarrow \sf \:  \dfrac{19}{3}

Answered by MisterIncredible
31

\Large{\underline{\tt{\orange{ Question }}} : -} \\  \\ \sf Find \:  the \:  value \:  of ;  \\  \\ \sf{ \dfrac{ \cot^2 30 + 4 \sin^2 45 + 3 \csc^2 60 + 5 \cos^2 90}{ \csc 30 + \sec 60 - \tan^2 60 }} \\   \\ \Large{\underline{\tt{\red{ Answer }}} : - } \\   \\ \underline{\rm{ Required \:  to \:  find }: -}\\  \\ \tt value \ of ;  \\ \sf{ \dfrac{ \cot^2 30 + 4 \sin^2 45 + 3 \csc^2 60 + 5 \cos^2 90}{ \csc 30 + \sec 60 - \tan^2 60 }} \\   \\ \underline{\rm{S}\mathtt{olution} : -} \\  \\   \sf \to we \:  know \:  that ;

 \:  \sf \to \cot 30 = \dfrac{1}{\sqrt{3}}   \\ \\  \sf  \to \sin 45 =  \frac{1}{ \sqrt{2} }  \\   \\ \to \sf  \csc 60 =  \frac{2}{ \sqrt{3} }  \\  \\  \sf \to \cos 90 = 0 \\  \\ \sf \to  \csc 30 = 2 \\  \\  \sf \to  \sec 60 = 2 \\  \\  \sf \to \tan 60 =  \sqrt{3}  \\  \\  \tt Substituting \ the \ values \ in \ the \:  given \ expression  \\  \\  \rightarrow \sf \sf{ \dfrac{ \cot^2 30 + 4 \sin^2 45 + 3 \csc^2 60 + 5 \cos^2 90}{ \csc 30 + \sec 60 - \tan^2 60 }}  \\  \\  \rightarrow  \sf \dfrac{  \bigg( \dfrac{1}{ \sqrt{3} }  {\bigg)}^{2} + 4 \bigg( \dfrac{1}{ \sqrt{2} } { \bigg)}^{2}  + 3 \bigg(  \dfrac{2}{ \sqrt{3} }  { \bigg)}^{2} + 5 \big(0 { \big)}^{2}   }{2 + 2 -  \big(  \sqrt{3} { \big)}^{2} } \\  \\  \to \sf \dfrac{ \dfrac{1}{3} +  \dfrac{2}{1}   + 4 + 0}{4 - 3} \\  \\  \to \sf \dfrac{ \dfrac{1 + 6 + 12 + 0}{3}}{1} \\  \\  \to \sf  \dfrac{19}{3} \\  \\  \sf{ \green{ \therefore value \: of  \: \sf{ \dfrac{ \cot^2 30 + 4 \sin^2 45 + 3 \csc^2 60 + 5 \cos^2 90}{ \csc 30 + \sec 60 - \tan^2 60  }} =  \red{ \dfrac{19}{3}}}}

  \Large{\underline{\tt{\blue{ Question }}}:-} \\  \\ \sf \dfrac{ \sin \theta }{\cot \theta + \csc \theta }=2 + \dfrac{\sin \theta }{ \cot \theta - \csc \theta } \\  \\ \Large{\underline{\tt{\orange{ Answer }}}:-}

 \\  \\  \rm{\underline{ Required \:  to  \: prove }: - } \\   \\ \sf \dfrac{ \sin \theta }{\cot \theta + \csc \theta }=2 + \dfrac{\sin \theta }{ \cot \theta - \csc \theta } \\  \\  \rm{\underline{Proof }:-}  \\  \\ \sf \dfrac{ \sin \theta }{\cot \theta + \csc \theta }=2 + \dfrac{\sin \theta }{ \cot \theta - \csc \theta } \\  \\ \sf Consider  \ the \ LHS \ part  \\  \\ \to \dfrac{ \sin \theta }{\cot \theta + \csc \theta } \\  \\ \to \dfrac{\sin \theta }{ \dfrac{ \cos \theta }{ \sin \theta }+ \dfrac{1}{ \sin \theta }} \\  \\ \to \dfrac{ \sin \theta}{ \dfrac{ \cos \theta + 1 }{ \sin \theta }} \\  \\ \to \dfrac{ \sin \theta }{ \cos \theta + 1 } \times \dfrac{1}{ \sin \theta } \\  \\  \to \dfrac{ \sin \theta }{ \sin \theta ( \cos \theta + 1 )} \\  \\  \to \dfrac{ \sin \theta }{ \sin \theta \cos \theta +  \sin \theta} \\  \\ \to  \dfrac{ \sin \theta}{ \sin \theta \cos \theta} +  \dfrac{ \sin \theta}{ \sin \theta} \\  \\  \to \dfrac{1}{ \cos \theta} +  1 \\  \\  \to  \bigg\lgroup \dfrac{1 +  \cos \theta}{ \cos \theta} \bigg \rgroup

  \\   \\  \sf Consider  \: the \:  RHS \:  part  \\  \\ \to \sf 2 + \dfrac{ \sin \theta}{ \cot \theta - \csc \theta } \\  \\ \to \sf 2 + \dfrac{ \sin \theta}{ \dfrac{ \cos \theta }{ \sin \theta } - \dfrac{ 1 }{ \sin \theta }} \\  \\ \sf \to 2 + \dfrac{ \sin \theta}{ \dfrac{ \cos \theta - 1}{ \sin \theta }} \\  \\  \sf \to 2 +  \dfrac{ \sin \theta}{ \cos \theta  - 1}  \times  \dfrac{1}{ \sin \theta}  \\  \\  \to \sf 2 +  \dfrac{ \sin \theta}{ \sin \theta( \cos \theta - 1)}  \\  \\  \to \sf 2 +  \dfrac{ \sin \theta}{ \sin \theta \cos \theta -  \sin \theta}  \\  \\  \to \sf 2 +  \dfrac{ \sin \theta}{ \sin  \theta \cos \theta} -  \dfrac{ \sin \theta}{ \sin \theta} \\  \\  \to \sf 2 +  \dfrac{1}{ \cos \theta}  - 1  \\  \\  \to \sf  \dfrac{2 \cos \theta  + 1 -  \cos \theta}{ \cos \theta}  \\  \\  \to \sf \dfrac{ \cos \theta + 1}{ \cos \theta}

 \sf Equate \ both \  LHS \ \& \ RHS  \\  \\ \tt \to \dfrac{ 1 + \cos \theta }{\cos \theta } = \dfrac{\cos \theta + 1 }{ \cos \theta} \\  \\ \to  \dfrac{ \cos \theta + 1 }{ \cos \theta}= \dfrac{ \cos \theta + 1 }{ \cos \theta} \\  \\  \sf{ \red{ \therefore  LHS = RHS  \leftarrow}} \\  \\  \Large{\tt{\mathscr{\orange{ Hence \; Proved ! }}}}

Similar questions