Math, asked by kashvi23456, 8 months ago

kindly solve the attached question ​

Attachments:

Answers

Answered by akashtonger9299
2
Hope it helps you plz mark as brilliant answer
Attachments:
Answered by Cosmique
27

GIVEN :

  • \sf{x=3+2\sqrt{2}}

TO FIND :

  • Value of :

     \;\;\;\;\;\sf{\bigg(\sqrt{x}+\dfrac{1}{\sqrt{x}}\bigg)\bigg(\sqrt{x}-\dfrac{1}{\sqrt{x}}\bigg)=?= m }

SOLUTION :

We need to find,

\implies\sf{\bigg(\sqrt{x}+\dfrac{1}{\sqrt{x}}\bigg)\bigg(\sqrt{x}-\dfrac{1}{\sqrt{x}}\bigg)=?}

Using algebraic identity

( a + b ) ( a - b ) = a² - b²

\implies\sf{\bigg(\sqrt{x}+\dfrac{1}{\sqrt{x}}\bigg)\bigg(\sqrt{x}-\dfrac{1}{\sqrt{x}}\bigg)=(\sqrt{x})^2 - \left(\dfrac{1}{\sqrt{x}}\right)^2}

\implies\sf{m=x - \dfrac{1}{x}}

\implies\sf{m=\dfrac{x^2-1}{x}}

putting value of x

\implies\sf{m=\dfrac{(3+2\sqrt2)^2-1}{3+2\sqrt2}}

using trigonometric identity

( a + b )² = a² + b² + 2 ab

in numerator

\implies\sf{m=\dfrac{(3)^2+(2\sqrt2)^2+2(3)(2\sqrt2)-1}{3+2\sqrt2}}

\implies\sf{m=\dfrac{9+8+12\sqrt2-1}{3+2\sqrt2}}

\implies\sf{m=\dfrac{16+12\sqrt2}{3+2\sqrt2}}

Rationalising the denominator

\implies\sf{m=\dfrac{16+12\sqrt2}{3+2\sqrt2}\times \dfrac{3-2\sqrt2}{3-2\sqrt2}}

\implies\sf{m=\dfrac{16(3)+12\sqrt2(3)+16(-2\sqrt{2})+12\sqrt{2}(-2\sqrt{2})}{(3+2\sqrt2)\;\;(3-2\sqrt2)}}

Using trigonometric identity

( a + b ) ( a - b ) = a² - b²

In denominator

\implies\sf{m=\dfrac{48+36\sqrt2-32\sqrt{2}-48}{9-8}}

\implies\sf{m=\dfrac{0+4\sqrt2}{1}}

\implies\sf{m=4\sqrt2}

therefore,

\implies\underbrace{\boxed{\sf{\bigg(\sqrt{x}+\dfrac{1}{\sqrt{x}}\bigg)\bigg(\sqrt{x}-\dfrac{1}{\sqrt{x}}\bigg)=4\sqrt2}}}\;\;\;\purple{\bigstar}

Similar questions