Math, asked by BazalledBlue, 11 days ago

kindly solve this...​

Attachments:

Answers

Answered by NITESH761
4

Step-by-step explanation:

\rm \sqrt{\dfrac{\sec θ -1}{\sec θ +1}} + \sqrt{\dfrac{\sec θ+1}{\sec θ -1}}

\rm \sqrt{\dfrac{\sec θ -1}{\sec θ +1}× \dfrac{\sec θ -1}{\sec θ -1}} + \sqrt{\dfrac{\sec θ+1}{\sec θ -1}× \dfrac{\sec θ +1}{\sec θ +1}}

\sqrt{ \dfrac{(\sec θ -1)^2}{\sec ^2 θ-1}} + \sqrt{\dfrac{(\sec  θ +1)^2}{\sec ^2 θ -1}}

\dfrac{\sec θ -1}{\tan θ} + \dfrac{\sec  θ +1}{\tan θ}

\dfrac{\sec θ -1+ \sec θ +1}{\tan  θ}

\dfrac{2 \sec θ }{\tan  θ}

\rm \implies 2 \cosec θ

Similar questions