Math, asked by motral, 9 months ago

kindly solve this maths question
I need help​

Attachments:

Answers

Answered by aayushrambo8
1

Answer:

1.

 \frac{2}{25}

2.

 \frac{1}{ - 486}

3. -2

4. 3

5. 2

Step-by-step explanation:

For the questions

Let the required numbers be x

1. A/q

x \:  \times {- 4}^{ - 2 \: }  =  {10}^{? - 2}

 \frac{x}{  { - 4}^{2} } \:  =  \:  \frac{1}{ {10}^{2} }

 \frac{x}{16}  =  \frac{1}{100}

x \:  =  \frac{16}{100}

x \:  =  \:  \frac{2}{25}

Ans

2. A/q

x  \:  \div   ( {\frac{ - 2}{3} )}^{ - 1} \:  =  {27}^{ - 2}

x \:  \times  \frac{ - 2}{3}  \:  =  \:  \frac{1}{{27}^{2} }

x \:  =  \:  \frac{3}{ - 2 \times  {3}^{6} }

x \:  =  \:  \frac{1}{ - 2 \times  {3}^{5} }

x \:  =  \:  \frac{1}{- 486}

Ans

3. A/q

({ \frac{2}{9}) }^{3}  \:  \times  \:  ({ \frac{2}{9}) }^{ - 6}  \:  =  \:  ({ \frac{2}{9}) }^{2m + 1}

Since the bases of the exponent are same.

Therefore,

3  + ( - 6) = 2m + 1

3 - 6 = 2m + 1

 - 3 - 1 = 2m

m =  \frac{ - 4}{2}

m \:  =  - 2

Ans.

4. A/q

 {5}^{x - 1}  \div 25 = 125

 \frac{ {5}^{2x - 1} }{ {5}^{2} }  =  {5}^{3} Since the bases are same.

Therefore,

2x - 1 - 2 = 3

2x - 3 = 3

2x = 6

x = 3

Ans

5. A/q

 \frac{ {2}^{3x - 1} + 10 } { 7}  = 6

 {2}^{3x - 1}  + 10 = 42

 {2}^{3x - 1}  = 32

 {2}^{3x - 1}  = 32

 {2}^{3x - 1}  =  {2}^{5}

Since the bases are same.

Therefore,

3x - 1 = 5

3x \:  = 6

x \:  =  \: 3

Ans

Similar questions