Kinetic energy of a particle varies as function of
time (t) as k = Asin2Bt. Maximum instantaneous
power delivered by the net force acting on the
particle is
(1) 2AB
(2) AB
(3) AIB
(4) 2A/B
Answers
Answered by
6
answer : option (1) 2AB
explanation : kinetic energy of a particle varies as function of time as K = Asin(2Bt)
we know, power is the rate of change of energy with respect to time.
i.e., P = dE/dt , where E is energy and P is power.
so, differentiating kinetic energy with respect to time,
P = d{Asin(2Bt)}/dt = 2ABcos(2Bt)
maximum power when, cos(2Bt) will be maximum. and we know maximum value of cosine function is 1.
so, maximum power = 2AB × 1 = 2AB
hence, option (1) is correct choice.
Similar questions