kisi kaa dum hai to banake dikhae toppers
Attachments:
Answers
Answered by
0
tumhare pass hai toh tuh bana
abhishek14580:
bhaag re puji
Answered by
1
Let, tan^-1 (x) = θ
Therefore, tan θ = x
We know that,
tan 2θ = 2tanθ/(1−tan^2θ)
tan 2θ = 2x/(1−x^2)
2θ = tan−1−1(2x1−x22x1−x2)
2 tan^-1(x) = tan^-1 {2x /(1−x^2)} ……. 1
Again,
sin 2θ = 2tanθ/1+tan^2(θ)
sin 2θ = 2x1+x22x1+x2
2θ = sin^-1 {2x / (1+x^2)}
2 tan^-1= sin^-1{2x/(1+x^2)} …………………….. 2
Now, cos 2θ = 1−tan^2(θ)/1+tan^2(θ)
cos 2θ = ( 1−x^2)/ (1+x^2)
2θ = cos^-1 (1−x^2/1+x^2)
2 tan^-1(x) = cos{ (1−x^2) /(1+x^2)}……………………..3
Therefore, from (i), (ii) and (iii)
we get
2Tan^-1(x)= Sin^-1{2x/(1+x^2)} =Cos^-1 (1-x^2)/(1+x^2) = tan^-1( 2x/ 1-x^2)
Similar questions