koi hai jo is question ko solve krde
Answers
Hey mate❤
given equation of circle
x²+y²+2ax+c=0. ...(1)
x²+y²+2bx+c=0. ...(2)
compare by general equation of circle
X²+Y²+2GX+2FY+C=0
SO,
G1=a, F1=0 ,C1=c
and,
G2=b,F2=0,C2=c
Now,
centre of first circle
C'= (-G1,-F1)
or,
C'=(-a,0)
centre of second circle
c"=(-G2,-F2)
C"=(-b,0)
so,
distance between to circle
will be
C'C"=√(a²+b²)
Radius of first circle
r1=(√(g²+f²-c)
r1=√(a²-c)
radius of second circle
r2= √(b²-c)
so,
if two circle touch each other
c'c"= r1+r2
=>√(a²+b²)=√(a2-c)+√(b²-c)
squaring both side
=>(a2+b²)=(a²-c)+(b²-c)+2√(a²-c)× √(b²-c)
=>2√(a²-c)× √(b²-c)=2c
again squaring both side
we get ,
=>4(a²-c)(b²-c)=4c²
=>a²b²-b²c-a²c+c²=c²
=>a²b²=b²c+a²c
=>1/a² + 1/b² = 1/c
Thus:--
Your answer will be option number
(1)
Hopes its helps u
➡Please Follow me
✔✔✔✔✔✔✔✔✔✔
@Abhi✌✌
✔✔✔✔✔✔✔✔✔✔