Math, asked by govindmittal750, 11 months ago

L^(-1){1/(p-1)^5(p+2)} find inverse laplace transform​

Answers

Answered by 405751
0

Answer=

To find the transformation, compare the expression to the parent function and check to see if there is a horizontal or vertical shift, reflection about the x-axis or y-axis, and if there is a vertical stretch.

Answered by rinayjainsl
0

Answer:

The inverse laplace transform of given function is

L {}^{ - 1} (f(p))  \\ =  \frac{t {}^{4}e {}^{t}  }{74}  -  \frac{t {}^{3} e {}^{t} }{54}  +  \frac{t {}^{2} e {}^{t} }{54}  -  \frac{te {}^{t} }{81}  +  \frac{e {}^{t} }{243}  -  \frac{e {}^{ - 2t} }{243}

Step-by-step explanation:

The given function can be written as

f(p) =  \frac{1}{(p - 1) {}^{5} (p + 2)}

It can be rearranged in way shown below

f(p) =  \frac{1}{3} ( \frac{(p + 2) - (p - 1)}{(p - 1) {}^{5} (p + 2)} ) \\  =  \frac{1}{3} ( \frac{1}{(p - 1) {}^{5} }  -  \frac{1}{(p - 1) {}^{4}(p + 2) } )

Doing the similar operation again for the second term we get

f(p) =   \frac{1}{3} ( \frac{1}{(p - 1) {}^{5} }  -   \frac{1}{3} ( \frac{1}{(p - 1) {}^{4} }  -  \frac{1}{(p - 1) {}^{3}(p + 2) } )  )

Repeating again

f(p) =     \frac{1}{3} ( \frac{1}{(p - 1) {}^{5} }  -   \frac{1}{3} ( \frac{1}{(p - 1) {}^{4} }  -  \frac{1}{3}  (\frac{1}{(p - 1) {}^{3}} -  \frac{1}{(p - 1) {}^{2}(p + 2) }  )  )

Repeating again we get

f(p) =   \frac{1}{3} ( \frac{1}{(p - 1) {}^{5} }  -   \frac{1}{3} ( \frac{1}{(p - 1) {}^{4} }  -  \frac{1}{3}  (\frac{1}{(p - 1) {}^{3}} - \frac{1}{3}   (\frac{1}{(p - 1) {}^{2} } -  \frac{1}{(p - 1)(p + 2)}   )  ) \\  =  \frac{1}{3} ( \frac{1}{(p - 1) {}^{5} }  -   \frac{1}{3} ( \frac{1}{(p - 1) {}^{4} }  -  \frac{1}{3}  (\frac{1}{(p - 1) {}^{3}} - \frac{1}{3}   (\frac{1}{(p - 1) {}^{2} } -   \frac{1}{3}( \frac{1}{(p - 1)}  -  \frac{1}{p + 2}   )  ) Simplifying the above term we get,

f(p) =  \frac{1}{3(p - 1) {}^{5} }  -  \frac{1}{9(p - 1) {}^{4}   }  +  \frac{1}{27(p - 1) {}^{3} }  -  \frac{1}{81(p - 1) {}^{2} }  +  \frac{1}{243(p - 1)}  -  \frac{1}{243(p + 2)}

Applying inverse laplace to the above function we get

L {}^{ - 1} (f(p))  \\ =  \frac{t {}^{4}e {}^{t}  }{74}  -  \frac{t {}^{3} e {}^{t} }{54}  +  \frac{t {}^{2} e {}^{t} }{54}  -  \frac{te {}^{t} }{81}  +  \frac{e {}^{t} }{243}  -  \frac{e {}^{ - 2t} }{243}

Therefore,the inverse laplace transform of the given function is derived.

#SPJ3

Similar questions