Math, asked by anitasaanvika, 9 months ago

L, 1) N-1, 2) 4) (2, -1)
14. The first degree terms of
ax² + 2hxy +by? +2gx + 2fy +c= 0 are
removed by shifting origin to (a,b). The
new equation is
1) ax² + 2hxy + by2 + 2 ya +2bB+c = 0
2) ax² + 2hxy + by2 + ga + f B+c=0
3) ax² + 2hxy + by2 + ha + bB+c=0
4) ax +2hxy – by – ha – bt – c = 0​

Answers

Answered by monuyadav87696
0

Step-by-step explanation:

1)Given: ax

2

+2hxy+by

2

+2gx+2fy+c=0

2ax+2hy+2hx

dx

dy

+2by

dx

dy

+2g+2f

dx

dy

=0

2hx+2by+2f

−(2ax+2hy+2g)

=

dx

dy

2)ax

2

+2hxy+by

2

+2gx+2fy+c=0

let the twe lines be.

L

1

;y=m

1

x+c

1

L

2

:y=m

2

x+c

2

(m

1

x+c

1

−y)(m

2

x+c

2

−y)=0− (ii)

on comparing (i) and(ii) , we got

on comparing

(i) and (ii), we got

m

1

c

2

+m

2

c

1

=

b

2g

& c

1

+c

2

=−

b

2f

m

2

m

2

=

b

a

& c

1

c

2

=

b

c

Now,

1+m

2

2

∣c

1

=

1+m

2

2

∣c

21

Squaring both sides and cross-multiply

⇒c

1

2

+c

1

2

m

2

2

=c

2

2

+c

2

2

m

1

2

⇒(e

1

2

−c

2

2

)=(c

2

2

m

2

2

−c

1

2

m

2

2

)

⇒(c

1

+c

2

)(c

1

−c

2

)=(c

2

m

1

+c

1

m

2

)(c

2

m

1

−c

1

m

2

)

⇒(c

1

+c

2

)

(c

1

+c

2

)

2

−4c

1

c

2

=(c

2

m

1

+c

1

m

2

)

(E

2

m

1

+C

1

m

2

)

2

−4m

1

m

2

C

1

C

2

⇒−

b

2f

b

2

4f

2

b

4c

=

b

2q

b

2

4g

2

b

4a

⇒g

2

(

b

2

g

2

−ac

)=f

2

(

b

2

f

2

−bc

)

⇒f

4

−g

4

=c(bf

2

−ag

2

3) If two lines ax

2

+2hxy+by

2

=0 make angles α and β with X−axis, then the (α+β)=

a−b

2h

Explanation:

m

1

=tanα, m

2

=tanβ

∴tan(α+β)=

1−tanαtanβ

tanα+tanβ

=

1−m

1

m

2

m

1

+m

2

=

1−(a/b)

−2h/b

=

a−b

2h

Similar questions