Math, asked by lftsantosh, 19 days ago

lamda =? when x=2 is continuous​

Attachments:

Answers

Answered by manasmungi
2

-2 will be the answer.

As it is continuous at x=2 left hand limit should be equal to right hand limit.

Attachments:
Answered by mathdude500
7

Question :-

Find the value of lambda if f(x) is continuous at x = 2.

\rm \: \begin{gathered}\begin{gathered}\bf\: f(x) = \begin{cases} &\sf{3x - 4, \:  \: 0 \leqslant x \leqslant 2}  \\ \\ &\sf{2x + \lambda , \:  \: 2 < x \leqslant 3} \end{cases}\end{gathered}\end{gathered} \\

\large\underline{\sf{Solution-}}

Given function is

\rm \: \begin{gathered}\begin{gathered}\bf\: f(x) = \begin{cases} &\sf{3x - 4, \:  \: 0 \leqslant x \leqslant 2}  \\ \\ &\sf{2x + \lambda , \:  \: 2 < x \leqslant 3} \end{cases}\end{gathered}\end{gathered} \\

Consider,

\rm \: f(2) = 3(2) - 4 = 6 - 4 = 2 \\

Consider, RHL

\rm \: \displaystyle\lim_{x \to 2^ + }\rm f(x) \\

\rm \:  =  \: \displaystyle\lim_{x \to 2^ + }\rm 2x + \lambda  \\

To evaluate this limit, we use method of Substitution.

So, Substitute

\rm \: x \:  =  \: 2 + h, \:  \: as \: x \:  \to \: 2, \:  \: so \:  \: h \:  \to \: 0 \\

So, on substituting these values, we get

\rm \:  =  \: \displaystyle\lim_{h \to 0 }\rm [2(2 + h) + \lambda ] \\

\rm \: =  \: 4 + \lambda  \\

We know,

A function f(x) is said to be continuous at x = a, iff

\rm  \:  \: \: f(a) \:  =  \: \displaystyle\lim_{x \to a^-}\rm f(x) \:  =  \: \displaystyle\lim_{x \to a^ + }\rm f(x) \\

So, on substituting the values, we get

\rm \: 4 + \lambda  = 2 \\

\rm \: \lambda  = 2  - 4\\

\rm \: \lambda  \:  =  \:  -  \: 2\\

Hence,

\rm\implies \: \:  \boxed{\sf{  \:\rm \: \: \lambda  \:  =  \:  -  \: 2 \:  \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\boxed{\sf{  \:\displaystyle\lim_{x \to 0}\rm  \:  \frac{sinx}{x}  \:  =  \: 1 \: }} \\

\boxed{\sf{  \:\displaystyle\lim_{x \to 0}\rm  \:  \frac{tanx}{x}  \:  =  \: 1 \: }} \\

\boxed{\sf{  \:\displaystyle\lim_{x \to 0}\rm  \:  \frac{log(1 + x)}{x}  \:  =  \: 1 \: }} \\

\boxed{\sf{  \:\displaystyle\lim_{x \to 0}\rm  \:  \frac{ {e}^{x}  - 1}{x}  \:  =  \: 1 \: }} \\

\boxed{\sf{  \:\displaystyle\lim_{x \to 0}\rm  \:  \frac{ {a}^{x}  - 1}{x}  \:  =  \: loga \: }} \\

Similar questions