Math, asked by Anonymous, 1 month ago

Last question of the day :-

Evaluate :-
 \sf \dfrac{ {sin}^{2} 63 +  {sin}^{2}27 }{cos {}^{2} 17  + {cos}^{2}  73}

Answers

Answered by ItzMeMukku
42

\large\bf{\underline{\underline{Answer}}}

\boxed{\red{\sf\frac{sin}^{2}63° + sin² 27°}{cos² 17° + cos² 73°}}}

\sf{=	sin² 63° + sin² (90° - 63°)}

\sf{cos² 17° + cos² (90° - 17°)}

\sf{sin² 63° + cos² 63°}

\sf{cos² 17° + sin² 17°}

\underline{\boxed{\sf\purple{= 1}}}

\sf{∵	sin(90° - θ) = cosθ;}

\sf{cos(90° - θ) = sinθ;}

\red{\bf {sin²θ + cos² θ = 1}}

Thankyou :)

Answered by Anonymous
69

Given :-

\longmapsto \sf\bold{\pink{\dfrac{{sin}^{2}63 + {sin}^{2}27}{{cos}^{2}17 + {cos}^{2}73}}}\\

Solution :-

\leadsto \sf \dfrac{{sin}^{2}63 + {sin}^{2}27}{{cos}^{2}17 + {cos}^{2}73}

\implies \sf \dfrac{{sin}^{2}63 + {sin}^{2}(90 - 63)}{{cos}^{2}17 + {cos}^{2}(90 - 17)}

As we know that,

\mapsto \sf sin(90 - \theta) =\: cos\theta

\mapsto \sf cos(90 - \theta) =\: sin\theta

 \implies \sf \dfrac{{sin}^{2}63 + {cos}^{2}63}{{cos}^{2}17 + {sin}^{2}17}

Again, as we know that,

\mapsto \sf {sin}^{2}A + {cos}^{2}A =\: 1

 \implies \sf \dfrac{\cancel{1}}{\cancel{1}}

 \implies \sf\boxed{\bold{\red{1}}}

 \sf\boxed{\bold{\green{\therefore\: The\: answer\: is\: 1.}}}

\rule{150}{2}

Some Important Formula :

\mapsto \sf\bold{\purple{cos(90 - \theta) =\: sin\theta}}

 \mapsto \sf\bold{\purple{ sec(90 - \theta) =\: cosec\theta}}

 \mapsto \sf\bold{\purple{tan(90 - \theta) =\: cot\theta}}

 \mapsto \sf\bold{\purple{cosec(90 - \theta) =\: sec\theta}}

\mapsto \sf\bold{\purple{sin(90 - \theta) =\: cos\theta}}

\mapsto \sf\bold{\purple{cot(90 - \theta) =\: tan\theta}}

Similar questions