Math, asked by ItzAngel, 11 months ago

length of a rectangle is 2½ times its breadth. if it's perimeter is 70m, find the length and breadth..??

Plez answer ;-;​


PriteshBang: hi
ItzAngel: what do I want
PriteshBang: chat with me
PriteshBang: if r u free...
ItzAngel: and why do u want me to chat with u?
PriteshBang: @nthng special reason..
PriteshBang: good morning...
ItzAngel: hi...

Answers

Answered by Sauron
27

\mathfrak{\large{\underline{\underline{Answer :-}}}}

The Length is 25 m and Breadth is 10 m

\mathfrak{\large{\underline{\underline{Explanation :-}}}}

Given :

Length of the Rectangle = \tt{2 \dfrac{1}{2}} of It's Breadth

Perimeter of Rectangle = 70 m

To Find :

The Length and Breadth

Solution :

Consider the Breadth as x

Length will be \tt{2 \dfrac{1}{2}x}

\boxed{\sf{Perimeter=2(Length+Breadth)}}

\sf{\implies} \: 2\left[x  +  2\dfrac{1}{2}x\right]  = 70

\sf{\implies} \: 2\left[x  +  \dfrac{5}{2}x\right]  = 70

\sf{\implies} \: 2x + 5x = 70

\sf{\implies} \:7x = 70

\sf{\implies} \:x =  \dfrac{70}{7}

\sf{\implies} \:x = 10

Breadth = 10 m

\rule{300}{1.5}

Value of \tt{2 \dfrac{1}{2}x}

\sf{\implies} \:  \dfrac{5}{\cancel{2}}  \times \cancel{10}

\sf{\implies} \: 25

Length = 25 m

\therefore The Length is 25 m and Breadth is 10 m

\rule{300}{1.5}

\mathfrak{\large{\underline{\underline{Verification :-}}}}

\sf{\implies} \: 2(25 + 10) = 70

\sf{\implies} \: 50 + 20 = 70

\sf{\implies} \: 70 = 70

\therefore The Length is 25 m and Breadth is 10 m


ItzAngel: thank you very much
Sauron: :)
Anonymous: hii
ItzAngel: hii
Anonymous: hlw
Answered by Anonymous
22

Answer -

See the attached image ↑

Attachments:
Similar questions