Math, asked by wasihaiderawan, 1 year ago

length of latus rectum of parabola y^2-8y-4x=0 iis

Answers

Answered by rishu6845
6

Answer:

plzz give me brainliest ans and plzzzz follow me please

Attachments:
Answered by BrainlyConqueror0901
7

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Latus\:rectum(LL')=4\:units}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green {\underline \bold{Given : }} \\   \tt{ : \implies Eqn \: of \: parabola =    {y}^{2} -8y-4x=0} \\  \\ \red {\underline \bold{to \: find: }} \\  \tt {: \implies Length \: of \: latus \: rectum (LL')=?}

• According to given question :

  \tt{: \implies  {y}^{2}  - 8y - 4x = 0} \\  \\  \tt{:  \implies  {y}^{2}  - 8y  + 16 - 16- 4x = 0} \\  \\  \tt  {:  \implies  {(y - 4)}^{2}  = 4x  + 16 } \\  \\  \tt{:  \implies  {(y - 4)}^{2}  = 4(x + 4)} \\  \\ \text{So, \: it \: is \: in \: the \: form \: of} \\     \tt{: \implies Y^{2}  = 4aX} \\  \\  \bold{where :} \\   \tt{\circ \: a = 1} \\  \\  \bold{As \: we \: know \: that} \\     \tt{: \implies Latus \: rectum = 4a} \\  \\     \green{\tt{: \implies Latus \: rectum = 4 \: units}}

Similar questions