Math, asked by Kannan0017, 10 months ago

length of latus rectum of the hyperbola 25x^2-16y^2=400 is​

Answers

Answered by BrainlyConqueror0901
15

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Latus\:rectum(LL')=\frac{25}{2}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green {\underline \bold{Given : }} \\   \tt{ : \implies Eqn \: of \: hyperbola = 25{x}^{2}- {16y}^{2}   = 400} \\  \\ \red {\underline \bold{To \: Find: }} \\  \tt {: \implies Length \: of \: latus \: rectum (LL')=?}

• According to given question :

 \tt {:  \implies  {25x}^{2}  - 16{y}^{2}  = 400} \\  \\    \tt{: \implies  \frac{25x^{2} }{400} -  \frac{ 16{y}^{2} }{400} = 1 } \\  \\   \tt{ : \implies   \frac{ {x}^{2} }{ \frac{400}{25} }   +  \frac{ {y}^{2} }{ \frac{400}{16} }  = 1} \\  \\   \tt{: \implies  \frac{ {x}^{2} }{16}  +  \frac{ {y}^{2} }{25}  = 1} \\   \\ \text{So, \: it \: is \: in \: the \: form \: of}  \\  \tt{\to  \frac{ {x}^{2} }{ {a}^{2} }   - \frac{ {y}^{2} }{ {b}^{2} } = 1}  \\  \\  \bold{Where : } \\   \tt{\circ  \:  {a}^{2}  =  16} \\   \\   \tt{\circ \:  {b}^{2}  = 25} \\  \\  \bold{As \: we \: know \: that}  \\    \tt{ :  \implies Latus \: rectum =  \frac{2 {b}^{2}  }{a} } \\   \\  \text{Putting \: given \: values} \\ \tt{ :  \implies Latus \: rectum =  \frac{2 \times 25}{4} } \\  \\  \green{\tt{ :  \implies Latus \: rectum =  \frac{25  }{2} }}

Answered by bijila02
3

it works well dear.....

hehe

♥️

Attachments:
Similar questions