Math, asked by dibakarbiswas20mar19, 9 months ago

let 5f(x)+ 3f(1/x)=x+2 and y= xf(x) . then x=1 point dy/dx=?​

Answers

Answered by ashishks1912
1

GIVEN :

Let 5f(x)+ 3f(\frac{1}{x})=x+2 and y= xf(x) . then x=1 point \frac{dy}{dx}

TO FIND :

The value of \frac{dy}{dx} at x=1

SOLUTION :

Given that 5f(x)+ 3f(\frac{1}{x})=x+2 and y= xf(x)

Let 5f(x)+ 3f(\frac{1}{x})=x+2\hfill (1)

Now replace x=\frac{1}{x}

5f(\frac{1}{x})+ 3f(x)=\frac{1}{x}+2\hfill (2)

Multiply the equation (1) into 5 we get,

25f(x)+ 15f(\frac{1}{x})=5x+10\hfill (3)

Multiply the equation (2) into 3 we get,

15f(\frac{1}{x})+9f(x)=3(\frac{1}{x})+6\hfill (4)

Subtracting the equations (3) and (4) we get

25f(x)+ 15f(\frac{1}{x})=5x+10

15f(\frac{1}{x})+9f(x)=3(\frac{1}{x})+6   (-)

_________________________________

16f(x)=5x-3(\frac{1}{x})+4

16f(x)=\frac{5x^2-3+4x}{x}

xf(x)=\frac{5x^2+4x-3}{16}

y=xf(x)=\frac{5x^2+4x-3}{16}

y=\frac{5x^2+4x-3}{16}

Differentiating y with respect to x,

\frac{dy}{dx}=\frac{2(5x)^{2-1}+4(1)-0}{16}

By using the differentiation formulae :

i) \frac{d(x^n)}{dx}=nx^{n-1}

ii) \frac{d(ax)}{dx}=a

iii) \frac{d(c)}{dx}=0

\frac{dy}{dx}=\frac{10x+4}{16}

Now at x=1 for \frac{dy}{dx}

\frac{dy}{dx}=\frac{10(1)+4}{16}

=\frac{14}{16}

=\frac{7}{8}

∴ the value of \frac{dy}{dx} at x=1 is \frac{7}{8}

Answered by pulakmath007
30

SOLUTION

GIVEN

 \displaystyle \sf{ 5f(x) + 3f \bigg(  \frac{1}{x} \bigg) = x + 2\: \:  \: and \:  \: y = xf(x) }

TO DETERMINE

 \displaystyle \sf{  \frac{dy}{dx}  \:  \:  \:   \:  \: at  \:  \: x = 1}

EVALUATION

Here it is given that

 \displaystyle \sf{ 5f(x) + 3f \bigg(  \frac{1}{x} \bigg) = x + 2\:  \:  \:  ....(1)}

Putting x = 1 in both sides we get

 \displaystyle \sf{ 5f(1) + 3f \bigg(  \frac{1}{1} \bigg) = 1 + 2\:  }

 \implies \displaystyle \sf{ 5f(1) + 3f (1) = 3\:  }

 \implies \displaystyle \sf{ 8f(1) = 3\:  }

 \implies \displaystyle \sf{ f(1) =  \frac{3}{8} \:  }

Differentiating both sides of Equation (1) we get

 \displaystyle \sf{ 5f'(x)  -  \frac{3}{ {x}^{2} }  \: f' \bigg(  \frac{1}{x} \bigg) = 1\:  \:  \:  }

 \implies \displaystyle \sf{ 5f'(1)  -  \frac{3}{ {(1)}^{2} }  \: f' \bigg(  \frac{1}{1} \bigg) = 1\:  \:  \:  }

 \implies \displaystyle \sf{ 2f'(1) = 1\:  \:  \:  }

 \implies \displaystyle \sf{ f'(1) =  \frac{1}{2} \:  \:  \:  }

Here

 \sf{ y = xf(x)\: }

Differentiating both sides with respect to x we get

 \displaystyle \sf{  \frac{dy}{dx}  = f(x) + xf'(x)}

Putting x = 1 in both sides we get

 \displaystyle \sf{  \frac{dy}{dx} \bigg|_{x = 1}  = f(1) + 1.f'(1)}

 \implies \displaystyle \sf{  \frac{dy}{dx} \bigg|_{x = 1}  = f(1) +f'(1)}

 \implies \displaystyle \sf{  \frac{dy}{dx} \bigg|_{x = 1}  =  \frac{3}{8}  +  \frac{1}{2} }

 \implies \displaystyle \sf{  \frac{dy}{dx} \bigg|_{x = 1}  =  \frac{7}{8}  }

FINAL ANSWER

 \displaystyle \sf{  \frac{dy}{dx} \bigg|_{x = 1}  =  \frac{7}{8}  }

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Let f(1) = 3,f' (1)=- 1/3,g (1)=-4 and g' (1) =-8/3

The derivative of √[[f(x)]^2+ [g (x)]^2]

W. r. to. x. is

https://brainly.in/question/18312318

Similar questions