Let A = {1,2}, B={1,2,3,4}, C={5,6}&D={5,6,7,8} verify that
A×(B intersection C)=(A×B) intersection (A×C)?
Answers
Answer:
(i) To verify : A×(B∩C)=(A×B)∩(A×C)
We have B∩C={1,2,3,4}∩{5,6}=ϕ
∴ L.H.S = A×(B∩C)=A×ϕ=ϕ
A×B={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4)}
A×C={(1,5),(1,6),(2,5),(2,6)}
∴R.H.S.=(A×B)∩(A×C)=ϕ
∴L.H.S=R.H.S
Hence A×(B∩C)=(A×B)∩(A×C)
(ii) To verify: A×C is a subset of B×D
A×C={(1,5),(1,6),(2,5),(2,6)}
B×D={(1,5),(1,6),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),
(3,8),(4,5),(4,6),(4,7),(4,8)}
We can observe that all the elements of set A×C are the elements of set B×D
Therefore A×C is a subset of B×D..
Step-by-step explanation:
Answer:
(i) because A={1,2},B={1,2,3,4} and C={5,6}
<br>
therefore Axx(B nn C)=Axx phi=phi
<br>
Axx(B nnC)=phi" "...(1)
<br> Now,
AxxB ={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4)}
<br> and
AxxC={(1,5f),(1,6),(2,5),(2,6)}
<br>
therefore (AxxB) nn(AxxB)
=set of common elements of
(AxxB) and (AxxC)=phi
<br>
therefore (AxxB)nn(AxxC)=phi" "...(2)
<br> Then, from equation (1) and (2) , <br>
Axx(BnnC)=(AxxB) nn(AxxC)
hence Proved.
<br>
(ii) because=A={1,2},B={1,2,3,4},C-{5,6}, D={5,6,7,8}
<br> then
AxxC={(1,5),(1,6),(2,5),(2,6)}...(1)
<br> and
BxxD={(1,5),(1,6),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8)}
<br> Clearly , all ordered pair of
AxxC
are in
BxxD
. <br> Therefore ,
AxxC
is a subset of
BxxD.
Hence Proved.