Math, asked by kissmyassthama8407, 9 months ago

Let A = (1,8,27,64,125) and B= (1,2,3,4,5,6)and R be the relation ‘is cube of 'from A to B then domain of R is

Answers

Answered by MaheswariS
1

\textbf{Given:}

A=\{1,8,27,64,125\}

B=\{1,2,3,4,5,6\}

\textbf{To find:}

\text{Domain of R}

\textbf{Solution:}

\text{Here,}

_aR_b\;\iff\;a=b^3

1=1^3\;\implies\;_1R_1\;\implies\;(1,1)\;\in\;R

8=2^3\;\implies\;_8R_2\;\implies\;(8,2)\;\in\;R

27=3^3\;\implies\;_{27}R_3\;\implies\;(27,3)\;\in\;R

64=4^3\;\implies\;_{64}R_4\;\implies\;(64,4)\;\in\;R

125=5^3\;\implies\;_{125}R_5\;\implies\;(125,5)\;\in\;R

\implies\bf\,R=\{(1,1),(8,2),(27,3),(4,64),(125,5)\}

\therefore\textbf{Domain of R}=\{1,8,27,64,125\}

Answered by pulakmath007
34

\displaystyle\huge\red{\underline{\underline{Solution}}}

GIVEN

 \sf{ \: A =  \{1,8,27,64,125 \}\: }

 \sf{B=  \{1,2,3,4,5,6 \} \: }

R be the relation ‘is cube of 'from A to B

TO FIND

The domain of R

CALCULATION

The relation R is defined as :

 \sf{aRb \:  if  \: and  \: only  \: if \:  a =  {b}^{3} \:   for \:  a \in \:  A \: , b \in \:  B}

 \implies \sf{ R  =  \{(a, b) \in A \times  B : a =  {b}^{3}  \}\: }

By the above relation R

 \sf{If  \: b = 1  \: then \:  a =  {(1)}^{3}  = 1 }

 \sf{If  \: b = 2  \: then \:  a =  {(2)}^{3}  = 8 }

 \sf{If  \: b = 3  \: then \:  a =  {(3)}^{3}  = 27 }

 \sf{If  \: b = 4  \: then \:  a =  {(4)}^{3}  = 64 }

 \sf{If  \: b = 5  \: then \:  a =  {(5)}^{3}  = 125 }

So

 \sf{R =  \{(1,1), (8,2),(27,3),(64,4),(125,5) \}}

Hence

 \sf{Domain  \: of  \: R =  \{ 1,8,27,64,125 \}  }

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Let A={1,2,0,-1} B={1,3-1,-3} and

The function f(x) =px+q

If f={ (1,1),(2,3),(0,-1),(-1,-3)}

Find the value of p & q

https://brainly.in/question/21617889

Similar questions