Math, asked by Vivehasri, 4 months ago

Let A(2, 3) and B(2, -4) be two points. Ir P lies on the x-axis, such that AP - ³/7 AB,
find the coordinates of P​

Answers

Answered by mathdude500
3

\begin{gathered}\begin{gathered}\bf Given -  \begin{cases} &\sf{coordinates \: of \: A(2, 3)} \\ &\sf{coordinates \: of \: B(2, -4)}\\ &\sf{P \:  lies  \: on  \: the \:  x-axis}\\ &\sf{AP  =  \: \dfrac{3}{7} AB} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf  To \:  Find :-  \begin{cases} &\sf{the \:  coordinates \:  of  \: P}  \end{cases}\end{gathered}\end{gathered}

Concept Used

 \bold{ \red{Section  \: Formula }}

Let us consider a line segment joining the points A and B and let C divides AB in the ratio m : n internally, then coordinates of C(x, y) is given by

\bf \:( x, y) = (\dfrac{nx_1+mx_2}{m \:  + n}  , \dfrac{ny_1+my_2}{m + n} )

where coordinates of A and B are

\sf \:  A(x_1,y_1) and B(x_2,y_2)

\large\underline\purple{\bold{  \tt{Solution} :-  }}

\begin{gathered}\begin{gathered}\bf Let = \begin{cases} &\sf{the \:  coordinates \:  of  \: P \: be \: (x, 0)} \\ \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\bf\red{According \: to \: statement}\end{gathered}

\tt \:  \longrightarrow \: AP  = \dfrac{3}{7} \:   AB \:

\tt \:  \longrightarrow \: 7AP = 3(AP + PB)

\tt \:  \longrightarrow \: 7AP = 3AP + 3PB

\tt \:  \longrightarrow \: 7AP - 3AP = 3PB

\tt \:  \longrightarrow \: 4AP = 3PB

\tt\implies \: \boxed{ \tt \:  \green{\dfrac{AP}{PB}  = \dfrac{3}{4} }}

\bf\implies \: \boxed{ \blue{\bf \: P \: divides \: AB \: in \: the \: ratio \: 3 \:  : \: 4 .}}

☆ Using section Formula, P(x, 0) divides the line segment A(2, 3) and B(2, -4) in the ratio 3 : 4, we get

\tt \:  \longrightarrow \: (x, 0) =  \bigg(\dfrac{3 \times 2 + 4 \times 2}{3 + 4} , \dfrac{ - 4 \times 3 + 3 \times 4}{3 + 4}  \bigg)

\tt \:  \longrightarrow \: (x, 0) =  \bigg(\dfrac{14}{4} , \dfrac{0}{7}  \bigg)

\tt \:  \longrightarrow \: (x, 0) = (2, 0)

\tt\implies \: \boxed{ \purple{x \:  =  \: 2}}

\tt\implies \:  \large\boxed{ \tt \:  \red{coordinates \: of \: P \: is \: (2 \: ,  \: 0)}}

Attachments:
Similar questions