Math, asked by jhadivyanshu1201, 3 months ago

Let A =3 2 7
1 4 3
- 2 5 8
Find matrices X and Y such that X + Y = A, where X is a symmetric
and Y is a skew-symmetric matrix.​

Answers

Answered by mathdude500
3

Given :-

\begin{gathered}\sf A=\left[\begin{array}{ccc}3&2&7\\1&4&3\\ - 2&5&8\end{array}\right]\end{gathered}

Now,

\rm :\longmapsto\:A

 \sf \:  =  \:  \: \dfrac{1}{2}(2A)

 \sf \:  =  \:  \: \dfrac{1}{2}(A + A +  {A}^{T} -  {A}^{T})

 \sf \:  =  \:  \: \dfrac{1}{2} \bigg((A  +  {A}^{T}) + (A -  {A}^{T}) \bigg)

 \sf \:  =  \:  \: \dfrac{1}{2}(A +  {A}^{T})   + \dfrac{1}{2}(A -  {A}^{T})

 \sf \:  =  \:  \: X + Y

where,

\rm :\longmapsto\:X = \dfrac{1}{2}(A +  {A}^{T})

and

\rm :\longmapsto\:Y = \dfrac{1}{2}(A  -   {A}^{T})

Now,

\rm :\longmapsto\:\begin{gathered}\sf A=\left[\begin{array}{ccc}3&2&7\\1&4&3\\ - 2&5&8\end{array}\right]\end{gathered}

So,

\rm :\longmapsto\:\begin{gathered}\sf  {A}^{T} =\left[\begin{array}{ccc}3&1& - 2\\2&4&5\\ 7&3&8\end{array}\right]\end{gathered}

Now,

Consider,

\rm :\longmapsto\:\begin{gathered}\sf A +  {A}^{T} =\left[\begin{array}{ccc}3&2&7\\1&4&3\\ - 2&5&8\end{array}\right]\end{gathered} + \begin{gathered}\sf  \left[\begin{array}{ccc}3&1& - 2\\2&4&5\\ 7&3&8\end{array}\right]\end{gathered}

\rm :\longmapsto\:\begin{gathered}\sf A +  {A}^{T} =\left[\begin{array}{ccc}6&3&5\\3&8&8\\ 5&8&16\end{array}\right]\end{gathered}

\rm :\longmapsto\:\begin{gathered}\sf \dfrac{1}{2} (A +  {A}^{T}) =\left[\begin{array}{ccc}3& \frac{3}{2} & \frac{5}{2} \\ \frac{3}{2} &4&4\\  \frac{5}{2} &4&8\end{array}\right]\end{gathered}

\bf\implies \:\:\begin{gathered}\sf X =\left[\begin{array}{ccc}3& \frac{3}{2} & \frac{5}{2} \\ \frac{3}{2} &4&4\\  \frac{5}{2} &4&8\end{array}\right]\end{gathered}

Now,

\bf\implies \:\:\begin{gathered}\sf  {X}^{T}  =\left[\begin{array}{ccc}3& \frac{3}{2} & \frac{5}{2} \\ \frac{3}{2} &4&4\\  \frac{5}{2} &4&8\end{array}\right]\end{gathered}  = X

\bf\implies \:X \: is \: symmetric.

Now,

Consider,

\rm :\longmapsto\:\begin{gathered}\sf A  -   {A}^{T} =\left[\begin{array}{ccc}3&2&7\\1&4&3\\ - 2&5&8\end{array}\right]\end{gathered}  -  \begin{gathered}\sf  \left[\begin{array}{ccc}3&1& - 2\\2&4&5\\ 7&3&8\end{array}\right]\end{gathered}

\rm :\longmapsto\:\begin{gathered}\sf A  -   {A}^{T} =\left[\begin{array}{ccc}0&1&9\\ - 1&0& - 2\\  - 9&2&0\end{array}\right]\end{gathered}

\rm :\longmapsto\:\begin{gathered}\sf \dfrac{1}{2}( A  -   {A}^{T}) =\left[\begin{array}{ccc}0& \frac{1}{2} &\frac{9}{2} \\ - \frac{1}{2} &0& - 1\\  -  \frac{9}{2} &1&0\end{array}\right]\end{gathered}

\bf\implies \:\:\begin{gathered}\sf Y =\left[\begin{array}{ccc}0& \frac{1}{2} &\frac{9}{2} \\ - \frac{1}{2} &0& - 1\\  -  \frac{9}{2} &1&0\end{array}\right]\end{gathered}

\bf\implies \:\:\begin{gathered}\sf  {Y}^{T}  =\left[\begin{array}{ccc}0&  - \frac{1}{2} & - \frac{9}{2} \\ \frac{1}{2} &0& 1\\  \frac{9}{2} & - 1&0\end{array}\right]\end{gathered} =  - Y

\bf\implies \:Y \: is \: skew \: symmetric

Consider,

 \:\:\begin{gathered}\sf X + Y =\left[\begin{array}{ccc}3& \frac{3}{2} & \frac{5}{2} \\ \frac{3}{2} &4&4\\  \frac{5}{2} &4&8\end{array}\right]\end{gathered} + \begin{gathered}\sf \left[\begin{array}{ccc}0& \frac{1}{2} &\frac{9}{2} \\ - \frac{1}{2} &0& - 1\\  -  \frac{9}{2} &1&0\end{array}\right]\end{gathered}

\rm :\implies\:\begin{gathered}\sf X + Y=\left[\begin{array}{ccc}3&2&7\\1&4&3\\ - 2&5&8\end{array}\right]\end{gathered}

\bf\implies \:X + Y = A

Answered by nandanibirko30
0

Answer:

The best resource for #students. #shaalaa https://www.shaalaa.com/question-bank-solutions/if-3-2-7-1-4-3-2-5-8-find-matrices-x-y-such-that-x-y-a-where-x-symmetric-y-skew-symmetric-matrix-operations-matrices-addition-matrices_41724#z=BlvQEB2x

Attachments:
Similar questions