Math, asked by yeswanthk438, 5 hours ago

let A and B be two symmetric matrices .prove that AB = BA if and only if ABis a symmetric matrix. ​

Answers

Answered by MaheswariS
2

\underline{\textbf{Given:}}

\textsf{A and B are two symmetric matrices}

\underline{\textbf{To prove:}}

\textsf{AB=BA if and only if AB is a symmetric matrix}

\underline{\textbf{Solution:}}

\underline{\textbf{Concet used:}}

\textsf{(i) A square matrix A is said to be}\;\textbf{Symmetric}\;\mathsf{if\;A^T=A}

\textsf{(ii) If A and B are two square matrices of same order,}

\mathsf{then,\;\;(AB)^T=B^TA^T}

\textbf{Proof:}

\textsf{Suppose A and B are symmetric matrices}

\mathsf{Then,\;A^T=A\;\;\&\;\;B^T=B}

\mathsf{Consider,}

\mathsf{(A\,B)^T}

\mathsf{=B^T\,A^T}

\mathsf{=B\,A}

\mathsf{=A\,B}

\implies\mathsf{(A\,B)^T=A\,B}

\textsf{Hence, AB is symmetric matrix}

\textbf{Converse Part:}

\textsf{Suppose AB is a symmetric matrix}

\mathsf{Then,\;\;(AB)^T=AB}

\implies\mathsf{B^TA^T=AB}

\implies\mathsf{BA=AB}

\mathsf{Hence,\;AB=BA}

Similar questions