Math, asked by angirakashyap14, 6 months ago

let a,b,c be non zero integers such that a/c=a^2+b^2/c^2+b^2 and a is not equal to c, then factorise a^2+b^2+c^2

Answers

Answered by Pawarlakshaya44180
0

Answer:

Given (a+b+c)=0

& q=a  

2

+b  

2

+c  

2

 & r=a  

4

+b  

4

+c  

4

 

We know,

⇒(a+b+c)  

2

=a  

2

+b  

2

+c  

2

+2(ab+bc+ca)

Therefore  0  

2

=q+2(ab+bc+ca)

⇒ab+bc+ca=  

2

−q

​  

⟶(1)

Now, (a  

2

+b  

2

+c  

2

)  

2

=a  

4

+b  

4

+c  

4

+2(a  

2

b  

2

+b  

2

c  

2

+c  

2

a  

2

)  (all squared )

⇒q  

2

=r+2 ( some positive number )

⇒(ab+bc+ca)  

2

=a  

2

b  

2

+b  

2

c  

2

+c  

2

a  

2

+2(ab  

2

c+a  

2

bc+abc  

2

)

⇒  

4

q  

2

 

​  

−2=a  

2

b  

2

+b  

2

c  

2

+c  

2

a  

2

 

∴a  

2

b  

2

+b  

2

c  

2

+c  

2

a  

2

<  

4

q  

2

 

​  

 

∴q  

2

<r+2(  

4

q  

2

 

​  

)

⇒q  

2

<r+  

2

q  

2

 

​  

 

⇒  

2

q  

2

 

​  

<r

⇒q  

2

<2r

Hence, the answer is q  

2

<2r.

Step-by-step explanation:

Similar questions