Math, asked by vaishali1784, 8 months ago


Let a,b,c be positive real numbers such that a+b+c= 3. Show that a^b*b^c*c^a is less than equal to 1

Answers

Answered by shadowsabers03
8

Since x^2\geq0, we can have,

\longrightarrow (a-b)^2+(b-c)^2+(c-a)^2\geq0

because each term in LHS is non - negative, so will be the whole LHS. Equality holds true if and only if a=b=c.

Expanding the LHS, we get,

\longrightarrow 2[(a^2+b^2+c^2)-(ab+bc+ca)]\geq0

\longrightarrow (a^2+b^2+c^2)-(ab+bc+ca)\geq0

\longrightarrow a^2+b^2+c^2\geq ab+bc+ca

Adding 2(ab+bc+ca) to both sides,

\longrightarrow a^2+b^2+c^2+2(ab+bc+ca)\geq ab+bc+ca+2(ab+bc+ca)

\longrightarrow(a+b+c)^2\geq3(ab+bc+ca)

Given that a+b+c=3.

\longrightarrow3^2\geq3(ab+bc+ca)

\longrightarrow 3(ab+bc+ca)\leq9

Dividing by 9,

\longrightarrow \dfrac{ab+bc+ca}{3}\leq1\quad\quad\dots(1)

By AM - GM Inequality, we can have,

\longrightarrow\dfrac{ab+bc+ca}{3}\geq\sqrt[3]{a^b\,b^c\,c^a}

So (1) can become,

\longrightarrow \sqrt[3]{a^b\,b^c\,c^a}\leq1

\longrightarrow\underline{\underline{a^b\,b^c\,c^a\leq1}}

Hence Proved!

Similar questions