Math, asked by nikeshilla, 7 months ago

let a,b,c belongs to R such that 2a+3b+6c=0 and g(x) be the antiderivative of f(x)=ax^2+bx+c. if the slope of the tangent drawn to the curve y=g(x) at (1,g(1)) and (2,g(2)) are equal then
plz answer this i will make u brainlist.

Answers

Answered by MaheswariS
0

\textbf{Given:}

g(x)\,\text{be the anti-derivative of}\,f(x)=ax^2+bx+c\;\text{and}\;2a+3b+6c=0

\textbf{Solution:}

\text{Since $g(x)$ is the anti-derivative of f(x), we have}

\bf\dfrac{dg}{dx}=f(x)

\dfrac{dg}{dx}=ax^2+bx+c

\text{But,}

\text{Slope of the tangent drawn to the curve $y=g(x)$ at $(1,g(1))$ and $(2,g(2))$ are equal}

\dfrac{dg}{dx}|_(1,g(1))=\dfrac{dg}{dx}|_(2,g(2))

a(1)^2+b(1)+c=a(2)^2+b(2)+c

a+b+c=4a+2b+c

\implies\,b=-3a

\text{Now,}

2a+3b+6c=0

2a-9a+6c=0

-7a+6c=0

7a-6c=0

7a=6c

\dfrac{a}{c}=\dfrac{6}{7}

\implies\,a:c=6:7

\textbf{Answer:}

\bf\,a:c=6:7

Similar questions