Let A, B, C, D be positive angles such that A + B + C + D = 180°, show that sinA. sinB+ sinC. sinD = sin (B + C) . sin (B + D)
Answers
Answered by
5
hii mate ☺️
Taking L.H.S
sinA.sinB+sinC.sinD = > 2sinA.sinB+ 2sinC.sinD
=> cos(A-B) – cos(A+B) + cos(C-D) – cos(C+D)
-2sin(A-B+A+B)/2sin(A-B-A-B)/2 + 2sin(C-D+C+D)/2sin(C-D-C-D)/2
=> -2sinA
hope it helps you!!!!!!
Taking L.H.S
sinA.sinB+sinC.sinD = > 2sinA.sinB+ 2sinC.sinD
=> cos(A-B) – cos(A+B) + cos(C-D) – cos(C+D)
-2sin(A-B+A+B)/2sin(A-B-A-B)/2 + 2sin(C-D+C+D)/2sin(C-D-C-D)/2
=> -2sinA
hope it helps you!!!!!!
roger22:
thanks a lot to solve it....but if u see the desired result on rhs is different
Similar questions