Math, asked by Arslanjutt, 17 days ago

Let A be a 3 * 3 matrix such that det A = 2 . Then det * (- 10A ^ - 1) =​

Answers

Answered by vikkiain
2

- 500

Step-by-step explanation:

Given, \:  \:  det(A)=2 \:  \: and \:  \: A  \:  \: is \:  \:a \:  \: 3 \times 3 \:  \: matrix \\ we \:  \: know \:  \:  \boxed{det(kA) =  {k}^{n} det(A) \:  \:  \: and \:  \:  \: det(A^{ - 1} ) =  \frac{1}{det(A)} } \\ then, \:  \:  \:  \:  \:  det( - 10A^{ - 1} )& \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = ( - 10)^{3} det(A^{ - 1} ) \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = ( - 10)^{3}  \times  \frac{1}{det(A)}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  - 1000 \times  \frac{1}{2}  \\ \:  \:  \:    =  - 500

Similar questions