Math, asked by PragyaTbia, 1 year ago

Let a = i + 2j + 3k and b = 3i + j. Find the unit vector in the direction of a + b.

Answers

Answered by aarvi44
6
4i+4j is the unit vector in the direction of a+b
Answered by hukam0685
21

Answer: Unit vector in the direction of \vec a+\vec b

 \frac{4}{\sqrt{34} }\hat i +\frac{3}{\sqrt{34} }\hat j +\frac{3}{\sqrt{34} }\hat k\\\\


Step-by-step explanation:

let

\vec a=\hat i+2\hat j+3\hat k\\\\\vec b=3\hat i+\hat j\\\\\\\vec a+\vec b=\hat i+2\hat j+3\hat k+3\hat i+\hat j\\\\\\\vec a+\vec b=4\hat i+3\hat j+3\hat k\\\\\\

so unit vector in the direction of

\vec a+\vec b

|\vec a+\vec b|=\sqrt{4^{2}+3^{2}+3^{2}}\\\\=\sqrt{16+9+9}\\\\=\sqrt{34}

So unit vector in the direction of   \vec a+\vec b  is

= \frac{4}{\sqrt{34} }\hat i +\frac{3}{\sqrt{34} }\hat j +\frac{3}{\sqrt{34} }\hat k\\\\



Similar questions