Math, asked by saugatabiswas5460, 10 months ago

Let a random variable X have a binomial distribution with mean 8 and variance 4. If P(X ≤ 2) = k/(2)¹⁶, then k is equal to :
(A) 17 (B) 137 (C) 1 (D) 121

Answers

Answered by MaheswariS
1

\textbf{Concept used:}

\text{The probability mass function of binomial distribution is}

P(X=x)=n_{C_x}\;p^x\;q^{n-x}

x=0,1,2.......n

\text{Given:}

\text{Mean=8 and variance=4}

\implies\,np=8\;\text{and}\;npq=4

\implies\,(8)q=4

\implies\,q=\frac{4}{8}

\implies\bf\,q=\frac{1}{2}

\text{But, p+q=1}\implies\bf\;p=\frac{1}{2}

np=8\implies\bf\;n=16

\therefore\text{The probability mass function is}

P(X=x)={16}_{C_x}(\frac{1}{2})^{16}

\text{Given condition is}

P(X{\leq}2)=\frac{k}{2^{16}}

\implies\,P(X=0)+P(X=1)+P(X=2)=\frac{k}{2^{16}}

\implies\,{16}_{C_0}(\frac{1}{2})^{16}+{16}_{C_1}(\frac{1}{2})^{16}+{16}_{C_2}(\frac{1}{2})^{16}=\frac{k}{2^{16}}

\implies\,[16}_{C_0}+{16}_{C_1}+{16}_{C_2}]\,(\frac{1}{2})^{16}=\frac{k}{2^{16}}

\implies\,1+16+\frac{16{\times}15}{1{\times}2}=k

\implies\,1+16+(8{\times}15)=k

\implies\,1+16+120=k

\implies\boxed{\bf\,k=137}

\therefore\textbf{Option (B) is correct}

Similar questions