Math, asked by skapsar1278, 11 months ago

Let A = where b > 0. Then the minimum value of det(A)/b
is :
(A) 2√3 (B) –2√3
(C) –√3 (D) √3

Attachments:

Answers

Answered by knjroopa
4

Step-by-step explanation:

Given Given Let A = where b > 0. Then the minimum value of det(A)/b

is  

  • Given A = [2             b             1
  •                   b         b^2 + 1       b
  •                   1            b              2]
  • Now det (A) = 2(2b^2 + 2 – b^2) – b(2b – b) + 1(b^2 – b^2 – 1)
  •                    = 2b^2 + 4 – b^2 – 1
  •                   = b^2 + 3
  • Now minimum value of det (A) / b = b^2 + 3/b
  •                                                       = b + 3/b
  • Differentiating we get  f’ (b) = 1 – 3/b^2 = 0
  •                                            Or b^2 = 3
  •                                             Or b = √3
  •          Differentiating again we get f’(b) = 0 – (-2) x 3 / b^3
  •                                                Now 6 / b^3 > 0
  • So minimum value det (A) / b = b^2 + 3 / b
  •          = (√3)^2 + 3 / √3
  •           = 6 / √3
  •          = 2 √3

Reference link will be

https://brainly.in/question/11474862

Answered by Swarup1998
13

Given:

\quad\quad A=\left[\begin{array}{ccc} 2 & b & 1\\ b & b^{2}+1 & b\\ 1 & b & 2 \end{array}\right]

Solution:

Then, det(A)

\quad=\begin{array}{|ccc|} 2 & b & 1\\ b & b^{2}+1 & b\\ 1 & b & 2\end{array}

Expanding along the first row, we get:

\quad=2(2b^{2}+2-b^{2})-b(2b-b)+1(b^{2}-b^{2}-1)

\quad=2(b^{2}+2)-b(b)+1(-1)

\quad=2b^{2}+4-b^{2}-1

\quad=b^{2}+3

To attain the minimum value of \frac{det(A)}{b}:

Now, \frac{det(A)}{b}

\quad=\frac{b^{2}+3}{b}

\quad=b+\frac{3}{b}

\to f(b)=b+\frac{3}{b}

\to f'(b)=1-\frac{3}{b^{2}}

To attain the minimum value, we take f'(b)=0:

\quad 1-\frac{3}{b^{2}}=0

\to b=\sqrt{3}

∴ the minimum value of \frac{det(A)}{b} is

\quad=\frac{(\sqrt{3})^{2}+3}{\sqrt{3}}

\quad\quad=\frac{6}{\sqrt{3}}

\quad\quad\quad=2\sqrt{3}

Option (A) is correct.

Related problems:

Q1. Plsss solve this question of determinants

- https://brainly.in/question/9013063

Q2. Determinants questions

- https://brainly.in/question/9009175

Similar questions