Math, asked by StrongGirl, 7 months ago

Let a1, a2, .....a11: are in increasing AP. and if variance of these number is 90 then value of common differenuation of A.P. is.

Answers

Answered by shadowsabers03
24

Let the n'th term of the AP be,

\longrightarrow a_n=a+(n-1)d

Mean of these 11 terms is,

\longrightarrow \bar a=\dfrac{a_1+a_{11}}{2}

\longrightarrow \bar a=\dfrac{2a+10d}{2}

\longrightarrow \bar a=a+5d

\longrightarrow \bar a=a_6

Square deviation of each term is,

\longrightarrow(a_1-\bar a)^2=(a_{11}-\bar a)^2=25d^2

\longrightarrow(a_2-\bar a)^2=(a_{10}-\bar a)^2=16d^2

\longrightarrow(a_3-\bar a)^2=(a_9-\bar a)^2=9d^2

\longrightarrow(a_4-\bar a)^2=(a_8-\bar a)^2=4d^2

\longrightarrow(a_5-\bar a)^2=(a_7-\bar a)^2=d^2

\longrightarrow(a_6-\bar a)^2=0

Mean square deviation,

\displaystyle\longrightarrow\dfrac{1}{11}\sum_{i=1}^{11}(a_i-\bar a)^2=\dfrac{2(d^2+4d^2+9d^2+16d^2+25d^2)}{11}

\displaystyle\longrightarrow\dfrac{1}{11}\sum_{i=1}^{11}(a_i-\bar a)^2=10d^2

This is the variance which is equal to 90 as per the question.

\displaystyle\longrightarrow90=10d^2

\displaystyle\longrightarrow\underline{\underline{d=\pm 3}}

Answered by EnchantedGirl
20

Answer:

REFER TO THE ATTACHMENT

HOPE IT HELPS :)

Attachments:
Similar questions