Let ABC be a right-angled triangle having ZC = 90°.
Given that ZA is less than ZB. Also,
tan A+tan B+ tan^2 A+ tan^2B + tan^3A+ tan^3B= 70.
The degree measure of A lies in the interval
(A) (5,10) (B) (10,15) (C) (15, 20)
(D) (20,25)
Answers
Given : ABC be a right-angled triangle ∠C = 90° TanA + TanB + Tan²A + Tan²B + Tan³A + Tan³B = 70
To Find : degree measure of A
Solution:
∠C = 90°
=> ∠A + ∠B = 90°
TanA + TanB + Tan²A + Tan²B + Tan³A + Tan³B = 70
=> TanA + CotA + Tan²A + Cot²A + Tan³A + Cot³A = 70
=> TanA + 1/TanA + Tan²A + 1/Tan²A + Tan³A + 1/Tan²A = 70
=> (TanA + 1/TanA) + (TanA + 1/TanA)² - 2 + (TanA + 1/TanA) ³ - 3 (TanA + 1/TanA) = 70
=> -2(TanA + 1/TanA) + (TanA + 1/TanA)² + (TanA + 1/TanA) ³ = 72
(TanA + 1/TanA )(TanA + 1/TanA + 2)(TanA + 1/TanA - 1) = 72
TanA + 1/TanA = 4
=> Tan²A - 4TanA + 1 = 0
=> Tan A = 2 ± √3
=> A = 75° or 15°
A < B
Hence ∠A = 15°
measure of A = 15°
Learn More:
if tanc=tana+tanb/1+tanatanb then show that sin2c=sin2a+sin2b/1+ ...
https://brainly.in/question/16810424
If tan(a+b)=1 and tan(ab)
https://brainly.in/question/8662005