Let ABCD be a quadrilateral in which the diagonals intersect at O perpendicularly. Prove that AB + BC + CD+ DA >AC + BD.
Answers
Answered by
2
Given :
ABCD is a quadrilateral .
AC and BD are two diagonals .
To prove :
AB + BC + CD + DA > AC + BD
Proof :
i ) In ∆ABC ,
AB + BC > AC ---( 1 )
ii ) In ∆ADC ,
AD + DC > AC ---( 2 )
*********************************
The sum of any two sides of a
triangle is greater than the third
side .
************************************
iii ) In ∆BCD ,
BC + CD > BD ---( 3 )
iv ) In ∆ADB ,
AB + AD > BD -----( 4 )
Add ( 1 ) ,( 2 ) , (3 ) and ( 4 ),we get
AB + BC + AD+DC+BC+CD+AB+AD >
AC + AC + BD + BD
=> 2( AB + BC + CD + DA ) > 2(AC+BD)
=> AB + BC + CD + DA > AC + BD
•••••
ABCD is a quadrilateral .
AC and BD are two diagonals .
To prove :
AB + BC + CD + DA > AC + BD
Proof :
i ) In ∆ABC ,
AB + BC > AC ---( 1 )
ii ) In ∆ADC ,
AD + DC > AC ---( 2 )
*********************************
The sum of any two sides of a
triangle is greater than the third
side .
************************************
iii ) In ∆BCD ,
BC + CD > BD ---( 3 )
iv ) In ∆ADB ,
AB + AD > BD -----( 4 )
Add ( 1 ) ,( 2 ) , (3 ) and ( 4 ),we get
AB + BC + AD+DC+BC+CD+AB+AD >
AC + AC + BD + BD
=> 2( AB + BC + CD + DA ) > 2(AC+BD)
=> AB + BC + CD + DA > AC + BD
•••••
Attachments:
Similar questions