Let ABCD be a quadrilateral with diagonals AC and BD. Prove the following statements
(a) AB + BC + CD > AD
(b) AB + BC + CD + DA > 2AC(c) AB + BC + CD + DA > 2BD
(d) AB + BC + CD + DA > AC + BD.
Answers
Answered by
19
Solution :
i )
************************************
sum of any two sides of a
triangle is greater than the third side
***************************************
so
In ∆ABC , AB + BC > AC ----- ( 1 )
In ∆ACD , AC + CD > DA ---- ( 2 )
Adding ( 1 ) and ( 2 ) , we get
AB + BC + AC + CD > AC + DA
=> AB + BC + AC + CD > AC + DA
=> AB + BC + CD > DA
ii ) In ∆ACD , CD + DA > AC ---- ( 3 )
Adding ( 1 ) and ( 3 ) , we get
AB + BC + CD + DA > 2AC ----( 4 )
iii ) In ∆ABD, DA + AB > BD -----( 5 )
In ∆BCD , BC + CD > BD -------( 6 )
Adding ( 5 ) and ( 6 ), we get
AB + BC + CD + DA > 2BD ---( 7 )
iv ) Adding ( 4 ) and ( 7 ) , we get
2( AB + BC + CD + DA ) > 2( AC + BD )
=> AB + BC + CD + DA > AC + BD
••••••
i )
************************************
sum of any two sides of a
triangle is greater than the third side
***************************************
so
In ∆ABC , AB + BC > AC ----- ( 1 )
In ∆ACD , AC + CD > DA ---- ( 2 )
Adding ( 1 ) and ( 2 ) , we get
AB + BC + AC + CD > AC + DA
=> AB + BC + AC + CD > AC + DA
=> AB + BC + CD > DA
ii ) In ∆ACD , CD + DA > AC ---- ( 3 )
Adding ( 1 ) and ( 3 ) , we get
AB + BC + CD + DA > 2AC ----( 4 )
iii ) In ∆ABD, DA + AB > BD -----( 5 )
In ∆BCD , BC + CD > BD -------( 6 )
Adding ( 5 ) and ( 6 ), we get
AB + BC + CD + DA > 2BD ---( 7 )
iv ) Adding ( 4 ) and ( 7 ) , we get
2( AB + BC + CD + DA ) > 2( AC + BD )
=> AB + BC + CD + DA > AC + BD
••••••
Attachments:
Similar questions