Let aj, az, az, a4 be real numbers such that a, +az+az+a4 = 0 and až + až + a + a=1
Then the smallest possible value of the
expression (a; - az)? + (az – az)2 + (az – a,)? + (as – az)? lies in the interval
(0, 1.5)
A)
B) (1.5, 2.5)
C)
Answers
Answered by
2
Answer:
Step-by-step explanation:
Smallest value of (a1−a2)2+(a2−a3)2+(a3−a4)2+(a4−a1)2 is 0, when a1=a2=a3=a4=21.
Similar questions