Let cosθ+sinθ = √2 cosθ , then prove that cosθ - sinθ = √2 sinθ
Answers
Answered by
2
Answer:
Step-by-step explanation:
Let θ = x
cos x + sin x = √2 cos x
squaring on both side, we get......
cos2x + sin2x + 2cosxsinx = 2cos2x
2sinxcosx = 2cos2x - cos2x - sin2x
2sinxcosx = cos2x - sin2x
2sinxcosx = (cosx+sinx) (cosx - sinx)
2sinxcosx = (root2 cosx) (cosx - sinx)
2sinxcosx/root2 cosx = cosx - sinx
√2 sinx = cosx - sinx
Answered by
9
sakshi7048:
awesome answer 10th student .....xD
Similar questions
Math,
7 months ago
English,
7 months ago
Business Studies,
1 year ago
Math,
1 year ago
Math,
1 year ago